


Modern Physics

t the end of the nineteenth century, many scientists believed that they had

learned most of what there was to know about physics. Newton's laws of motion

and his theory of universal gravitation, Maxwell's theoretical work in unifying
electricity and magnetism, the laws of thermodynamics and kinetic theory, and the
principles of optics were highly successful in explaining a variety of phenomena.

As the nineteenth century turned to the twentieth, however, a major revolution
shook the world of physics. In 1900 Planck provided the basic ideas that led to the
formulation of the quantum theory, and in 1905 Einstein formulated his brilliant
special theory of relativity. The excitement of the times is captured in Einstein’'s own
words: “It was a marvelous time to be alive” Both ideas were to have a profound
effect on our understanding of nature. Within a few decades, these two theories
inspired new developments and theories in the fields of atomic physics, nuclear
physics, and condensed-matter physics.

In Chapter 39 we introduce the special theory of relativity. The theory provides us
with a new and deeper view of physical laws. Although the concepts underlying this
theory often violate our common sense, the theory correctly predicts the results of
experiments involving speeds near the speed of light. In the extended version of this
textbook, Physics for Scientists and Engineers with Modern Physics, we cover the
basic concepts of quantum mechanics and their application to atomic and molecular
physics, and we introduce solid-state physics, nuclear physics, particle physics, and
cosmology.

You should keep in mind that, although the physics that was developed during
the twentieth century has led to a multitude of important technological achievements,
the story is still incomplete. Discoveries will continue to evolve during our lifetimes,
and many of these discoveries will deepen or refine our understanding of nature and
the world around us. It is still a “marvelous time to be alive!

< A portion of the accelerator tunnel at Fermilab, near Chicago, lllinois. The tunnel is
circular and 1.9 km in diameter. Using electric and magnetic fields, protons and antiprotons
are accelerated to speeds close to that of light and then allowed to collide head-on, in order
to investigate the production of new particles. (Fermilab Photo)
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A Standing on the shoulders of a giant. David Serway, son of one of the authors, watches
over his children, Nathan and Kaitlyn, as they frolic in the arms of Albert Einstein at the
Einstein memorial in Washington, D.C. It is well known that Einstein, the principal architect
of relativity, was very fond of children. (Emily Serway)
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Our everyday experiences and observations have to do with objects that move at
speeds much less than the speed of light. Newtonian mechanics was formulated by
observing and describing the motion of such objects, and this formalism is very
successful in describing a wide range of phenomena that occur at low speeds.
However, it fails to describe properly the motion of objects whose speeds approach
that of light.

Experimentally, the predictions of Newtonian theory can be tested at high speeds
by accelerating electrons or other charged particles through a large electric potential
difference. For example, it is possible to accelerate an electron to a speed of 0.99¢
(where ¢ is the speed of light) by using a potential difference of several million volts.
According to Newtonian mechanics, if the potential difference is increased by a factor
of 4, the electron’s kinetic energy is four times greater and its speed should double to
1.98¢. However, experiments show that the speed of the electron—as well as the speed
of any other object in the Universe—always remains less than the speed of light,
regardless of the size of the accelerating voltage. Because it places no upper limit on
speed, Newtonian mechanics is contrary to modern experimental results and is clearly
a limited theory.

In 1905, at the age of only 26, Einstein published his special theory of relativity.
Regarding the theory, Einstein wrote:

The relativity theory arose from necessity, from serious and deep contradictions
in the old theory from which there seemed no escape. The strength of the new
theory lies in the consistency and simplicity with which it solves all these
difficulties . . . .!

Although Einstein made many other important contributions to science, the special
theory of relativity alone represents one of the greatest intellectual achievements of all
time. With this theory, experimental observations can be correctly predicted over the
range of speeds from v = 0 to speeds approaching the speed of light. At low speeds,
Einstein’s theory reduces to Newtonian mechanics as a limiting situation. It is important
to recognize that Einstein was working on electromagnetism when he developed the
special theory of relativity. He was convinced that Maxwell’s equations were correct, and in
order to reconcile them with one of his postulates, he was forced into the revolutionary
notion of assuming that space and time are not absolute.

This chapter gives an introduction to the special theory of relativity, with emphasis
on some of its consequences. The special theory covers phenomena such as the
slowing down of moving clocks and the contraction of moving lengths. We also discuss
the relativistic forms of momentum and energy.

In addition to its well-known and essential role in theoretical physics, the special
theory of relativity has practical applications, including the design of nuclear power
plants and modern global positioning system (GPS) units. These devices do not work if
designed in accordance with nonrelativistic principles.

1 A. Finstein and L. Infeld, The Evolution of Physics, New York, Simon and Schuster, 1961.
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Principle of Galilean relativity

(a)

39.1 The Principle of Galilean Relativity

To describe a physical event, we must establish a frame of reference. You should recall
from Chapter 5 that an inertial frame of reference is one in which an object is observed
to have no acceleration when no forces act on it. Furthermore, any system moving with
constant velocity with respect to an inertial frame must also be in an inertial frame.

There is no absolute inertial reference frame. This means that the results of an
experiment performed in a vehicle moving with uniform velocity will be identical to
the results of the same experiment performed in a stationary vehicle. The formal
statement of this result is called the principle of Galilean relativity:

The laws of mechanics must be the same in all inertial frames of reference.

Let us consider an observation that illustrates the equivalence of the laws of
mechanics in different inertial frames. A pickup truck moves with a constant velocity,
as shown in Figure 39.1a. If a passenger in the truck throws a ball straight up, and if air
effects are neglected, the passenger observes that the ball moves in a vertical path. The
motion of the ball appears to be precisely the same as if the ball were thrown by a
person at rest on the Earth. The law of universal gravitation and the equations of
motion under constant acceleration are obeyed whether the truck is at rest or in
uniform motion.

Both observers agree on the laws of physics—they each throw a ball straight up and
it rises and falls back into their hand. What about the path of the ball thrown by the
observer in the truck? Do the observers agree on the path? The observer on the
ground sees the path of the ball as a parabola, as illustrated in Figure 39.1b, while, as
mentioned earlier, the observer in the truck sees the ball move in a vertical path.
Furthermore, according to the observer on the ground, the ball has a horizontal
component of velocity equal to the velocity of the truck. Although the two observers
disagree on certain aspects of the situation, they agree on the validity of Newton’s laws
and on such classical principles as conservation of energy and conservation of linear
momentum. This agreement implies that no mechanical experiment can detect any
difference between the two inertial frames. The only thing that can be detected is the
relative motion of one frame with respect to the other.

QUiCk QUiZ 39.1 Which observer in Figure 39.1 sees the ball’s correct path?
(a) the observer in the truck (b) the observer on the ground (c) both observers.

(b)
Figure 39.1 (a) The observer in the truck sees the ball move in a vertical path when
thrown upward. (b) The Earth observer sees the path of the ball as a parabola.
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Suppose that some physical phenomenon, which we call an event, occurs and is
observed by an observer at rest in an inertial reference frame. The event’s location and
time of occurrence can be specified by the four coordinates (x, y, z, £). We would like
to be able to transform these coordinates from those of an observer in one inertial
frame to those of another observer in a frame moving with uniform relative velocity
compared to the first frame. When we say an observer is “in a frame,” we mean that the
observer is at rest with respect to the origin of that frame.

Consider two inertial frames S and S’ (Fig. 39.2). The frame S’ moves with a
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constant velocity v along the common x and x’ axes, where v is measured relative to S.
We assume that the origins of S and S’ coincide at ¢ = 0 and that an event occurs
at point P in space at some instant of time. An observer in S describes the event
with space-time coordinates (x, y, z, t), whereas an observer in S’ uses the coordinates
(x',y', #, t') to describe the same event. As we see from the geometry in Figure 39.2,
the relationships among these various coordinates can be written

!

x = x— vt y =y 2 =2z =t (39.1)

These equations are the Galilean space-time transformation equations. Note that
time is assumed to be the same in both inertial frames. That is, within the framework
of classical mechanics, all clocks run at the same rate, regardless of their velocity, so
that the time at which an event occurs for an observer in S is the same as the time for
the same event in S’. Consequently, the time interval between two successive events
should be the same for both observers. Although this assumption may seem obvious, it
turns out to be incorrect in situations where vis comparable to the speed of light.

Now suppose that a particle moves through a displacement of magnitude dx along
the x axis in a time interval dt as measured by an observer in S. It follows from
Equations 39.1 that the corresponding displacement dx’ measured by an observer in S’
is dx’ = dx — vdt, where frame S’ is moving with speed v in the x direction relative to
frame S. Because dt = dt’, we find that

dx’ dx
=——
dt’' dt
or
Uy = Uy — U (39.2)

where u, and u, are the x components of the velocity of the particle measured by
observers in S and S', respectively. (We use the symbol u for particle velocity rather
than v, which is used for the relative velocity of two reference frames.) This is the
Galilean velocity transformation equation. It is consistent with our intuitive notion
of time and space as well as with our discussions in Section 4.6. As we shall soon see,
however, it leads to serious contradictions when applied to electromagnetic waves.

Quick Quiz 39.2 A baseball pitcher with a 90-mi/h fastball throws a ball
while standing on a railroad flatcar moving at 110 mi/h. The ball is thrown in the
same direction as that of the velocity of the train. Applying the Galilean velocity
transformation equation, the speed of the ball relative to the Earth is (a) 90 mi/h
(b) 110 mi/h (c) 20 mi/h (d) 200 mi/h (e) impossible to determine.

The Speed of Light

It is quite natural to ask whether the principle of Galilean relativity also applies to
electricity, magnetism, and optics. Experiments indicate that the answer is no.
Recall from Chapter 34 that Maxwell showed that the speed of light in free space is
¢=3.00 X 108 m/s. Physicists of the late 1800s thought that light waves moved through a
medium called the ether and that the speed of light was ¢ only in a special, absolute frame
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Figure 39.2 An event occurs at a
point P. The event is seen by two
observers in inertial frames S and
S’, where S’ moves with a velocity v
relative to S.

Galilean transformation
equations

A PITFALL PREVENTION

39.1 The Relationship
Between the S and

S’ Frames

Many of the mathematical repre-
sentations in this chapter are true
only for the specified relationship
between the S and S’ frames. The
x and x’ axes coincide, except
that their origins are different.
The y and y" axes (and the z and
z' axes), are parallel, but do not
coincide due to the displacement
of the origin of S’ with respect to
that of S. We choose the time
t = 0 to be the instant at which
the origins of the two coordinate
systems coincide. If the S’ frame
is moving in the positive x direc-
tion relative to S, v is positive;
otherwise it is negative.
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(b) Upwind
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Figure 39.3 If the velocity of the
ether wind relative to the Earth

is v and the velocity of light relative
to the ether is ¢, then the speed

of light relative to the Earth is
(a) ¢ + vin the downwind

direction, (b) ¢ — vin the upwind
direction,
in the direction perpendicular to

the wind.

and (c) (¢2 — v?)1/2

at rest with respect to the ether. The Galilean velocity transformation equation was
expected to hold for observations of light made by an observer in any frame moving at
speed v relative to the absolute ether frame. That is, if light travels along the x axis and
an observer moves with velocity v along the x axis, the observer will measure the light to
have speed ¢ = v, depending on the directions of travel of the observer and the light.

Because the existence of a preferred, absolute ether frame would show that light
was similar to other classical waves and that Newtonian ideas of an absolute frame were
true, considerable importance was attached to establishing the existence of the ether
frame. Prior to the late 1800s, experiments involving light traveling in media moving at
the highest laboratory speeds attainable at that time were not capable of detecting
differences as small as that between ¢ and ¢ * v. Starting in about 1880, scientists
decided to use the Earth as the moving frame in an attempt to improve their chances
of detecting these small changes in the speed of light.

As observers fixed on the Earth, we can take the view that we are stationary
and that the absolute ether frame containing the medium for light propagation moves
past us with speed v. Determining the speed of light under these circumstances is
just like determining the speed of an aircraft traveling in a moving air current, or
wind; consequently, we speak of an “ether wind” blowing through our apparatus fixed
to the Earth.

A direct method for detecting an ether wind would use an apparatus fixed to the
Earth to measure the ether wind’s influence on the speed of light. If v is the speed of
the ether relative to the Earth, then light should have its maximum speed ¢ + v when
propagating downwind, as in Figure 39.3a. Likewise, the speed of light should have its
minimum value ¢ — v when the light is propagating upwind, as in Figure 39.3b, and an
intermediate value (¢> — v?)!/2 in the direction perpendicular to the ether wind, as in
Figure 39.3c. If the Sun is assumed to be at rest in the ether, then the velocity of the
ether wind would be equal to the orbital velocity of the Earth around the Sun, which
has a magnitude of approximately 3 X 10*m/s. Because ¢= 3 X 103 m/s, it is
necessary to detect a change in speed of about 1 part in 10* for measurements in the
upwind or downwind directions. However, while such a change is experimentally
measurable, all attempts to detect such changes and establish the existence of the
ether wind (and hence the absolute frame) proved futile! We explore the classic
experimental search for the ether in Section 39.2.

The principle of Galilean relativity refers only to the laws of mechanics. If it is
assumed that the laws of electricity and magnetism are the same in all inertial frames, a
paradox concerning the speed of light immediately arises. We can understand this by
recognizing that Maxwell’s equations seem to imply that the speed of light always has
the fixed value 8.00 X 108 m/s in all inertial frames, a result in direct contradiction to
what is expected based on the Galilean velocity transformation equation. According to
Galilean relativity, the speed of light should not be the same in all inertial frames.

To resolve this contradiction in theories, we must conclude that either (1) the laws
of electricity and magnetism are not the same in all inertial frames or (2) the Galilean
velocity transformation equation is incorrect. If we assume the first alternative, then a
preferred reference frame in which the speed of light has the value ¢ must exist and the
measured speed must be greater or less than this value in any other reference frame, in
accordance with the Galilean velocity transformation equation. If we assume the second
alternative, then we are forced to abandon the notions of absolute time and absolute
length that form the basis of the Galilean space—time transformation equations.

39.2 The Michelson-Morley Experiment

The most famous experiment designed to detect small changes in the speed of light was
first performed in 1881 by Albert A. Michelson (see Section 37.7) and later repeated
under various conditions by Michelson and Edward W. Morley (1838-1923). We state at
the outset that the outcome of the experiment contradicted the ether hypothesis.
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SECTION 39.2 + The Michelson—Morley Experiment 1249

The experiment was designed to determine the velocity of the Earth relative to
that of the hypothetical ether. The experimental tool used was the Michelson interfer-
ometer, which was discussed in Section 37.7 and is shown again in Figure 39.4. Arm 2 is
aligned along the direction of the Earth’s motion through space. The Earth moving
through the ether at speed v is equivalent to the ether flowing past the Earth in the
opposite direction with speed v. This ether wind blowing in the direction opposite the
direction of Earth’s motion should cause the speed of light measured in the Earth
frame to be ¢ — v as the light approaches mirror My and ¢ + v after reflection, where ¢
is the speed of light in the ether frame.

The two light beams reflect from M; and My and recombine, and an interference
pattern is formed, as discussed in Section 37.7. The interference pattern is observed
while the interferometer is rotated through an angle of 90°. This rotation interchanges
the speed of the ether wind between the arms of the interferometer. The rotation
should cause the fringe pattern to shift slightly but measurably. Measurements failed,
however, to show any change in the interference pattern! The Michelson-Morley
experiment was repeated at different times of the year when the ether wind was
expected to change direction and magnitude, but the results were always the same: no
fringe shift of the magnitude required was ever observed.”

The negative results of the Michelson—-Morley experiment not only contradicted
the ether hypothesis but also showed that it was impossible to measure the absolute
velocity of the Earth with respect to the ether frame. However, Einstein offered a
postulate for his special theory of relativity that places quite a different interpretation
on these null results. In later years, when more was known about the nature of light,
the idea of an ether that permeates all of space was abandoned. Light is now
understood to be an electromagnetic wave, which requires no medium for its
propagation. As a result, the idea of an ether in which these waves travel became
unnecessary.

Details of the Michelson-Morley Experiment

To understand the outcome of the Michelson—-Morley experiment, let us assume that
the two arms of the interferometer in Figure 39.4 are of equal length L. We shall
analyze the situation as if there were an ether wind, because that is what Michelson and
Morley expected to find. As noted above, the speed of the light beam along arm 2
should be ¢ — v as the beam approaches My and ¢ + v after the beam is reflected.
Thus, the time interval for travel to the right is L/ (¢ — v), and the time interval for
travel to the left is L/ (¢ + v). The total time interval for the round trip along arm 2 is

L L 2Lc _&(1 u2>—1

Algrmo = + I -

ct+ v c— v c v [4 c?

Now consider the light beam traveling along arm 1, perpendicular to the ether
wind. Because the speed of the beam relative to the Earth is (¢2 — v®)V/2 in this case
(see Fig. 39.3), the time interval for travel for each half of the trip is L/ (% — v?)1/2
and the total time interval for the round trip is
9L B 2_L< v2 )1/2

Algrm1 = (-2 T B

2

Thus, the time difference At between the horizontal round trip (arm 2) and the
vertical round trip (arm 1) is

L 2\-1 2\—-1/2
At=Atyyme = Alym1 = 2_ |:<1 - v_2> - (1 - v_2>
4 4 C

From an Earth observer’s point of view, changes in the Earth’s speed and direction of motion in
the course of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the
ether were zero at some time, six months later the speed of the Earth would be 60 km/s with respect to
the ether, and as a result a fringe shift should be noticed. No shift has ever been observed, however.

2
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Active Figure 39.4 According to
the ether wind theory, the speed of
light should be ¢ — v as the beam

approaches mirror My and ¢ + v
after reflection.
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can adjust the speed of the
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the light beams if there were an
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Because v?/¢? << 1, we can simplify this expression by using the following binomial
expansion after dropping all terms higher than second order:

(1—-—x"=1-— nx (for x << 1)
In our case, x = v2/¢2, and we find that

Lv?
At = Atymo — Aty 1 = = (39.3)

This time difference between the two instants at which the reflected beams arrive at
the viewing telescope gives rise to a phase difference between the beams, producing an
interference pattern when they combine at the position of the telescope. A shift in the
interference pattern should be detected when the interferometer is rotated through
90° in a horizontal plane, so that the two beams exchange roles. This rotation results in
a time difference twice that given by Equation 39.3. Thus, the path difference that
corresponds to this time difference is

2Lv2

Ad=c(2A1) =~
(4

Because a change in path length of one wavelength corresponds to a shift of one
fringe, the corresponding fringe shift is equal to this path difference divided by the
wavelength of the light:

2102

Shift = =3 (39.4)

In the experiments by Michelson and Morley, each light beam was reflected by
mirrors many times to give an effective path length L of approximately 11 m. Using
this value and taking v to be equal to 3.0 X 10 m/s, the speed of the Earth around the
Sun, we obtain a path difference of

2(11 m) (3.0 X 10* m/s)2

- =929x%x 1077
(3.0 X 10° m/s)2 22 m

Ad =

This extra travel distance should produce a noticeable shift in the fringe pattern.
Specifically, using 500-nm light, we expect a fringe shift for rotation through 90° of
Ad  22X10"m

Shift = —

=~ (044
A 5.0 X 10"’ m

The instrument used by Michelson and Morley could detect shifts as small as 0.01 fringe.
However, it detected no shift whatsoever in the fringe pattern. Since then, the
experiment has been repeated many times by different scientists under a wide variety of
conditions, and no fringe shift has ever been detected. Thus, it was concluded that the
motion of the Earth with respect to the postulated ether cannot be detected.

Many efforts were made to explain the null results of the Michelson-Morley
experiment and to save the ether frame concept and the Galilean velocity transforma-
tion equation for light. All proposals resulting from these efforts have been shown to
be wrong. No experiment in the history of physics received such valiant efforts to
explain the absence of an expected result as did the Michelson-Morley experiment.
The stage was set for Einstein, who solved the problem in 1905 with his special theory
of relativity.

39.3 Einstein’s Principle of Relativity

In the previous section we noted the impossibility of measuring the speed of the ether
with respect to the Earth and the failure of the Galilean velocity transformation
equation in the case of light. Einstein proposed a theory that boldly removed these
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SECTION 38.4 « Consequences of the Special Theory of Relativity 1251

difficulties and at the same time completely altered our notion of space and time.® He
based his special theory of relativity on two postulates:

1. The principle of relativity: The laws of physics must be the same in all inertial
reference frames.

2. The constancy of the speed of light: The speed of light in vacuum has the
same value, ¢ = 3.00 X 108 m/s, in all inertial frames, regardless of the velocity
of the observer or the velocity of the source emitting the light.

The first postulate asserts that all the laws of physics—those dealing with mechanics,
electricity and magnetism, optics, thermodynamics, and so on—are the same in all
reference frames moving with constant velocity relative to one another. This postulate is
a sweeping generalization of the principle of Galilean relativity, which refers only to the
laws of mechanics. From an experimental point of view, Einstein’s principle of relativity
means that any kind of experiment (measuring the speed of light, for example)
performed in a laboratory at rest must give the same result when performed in a labora-
tory moving at a constant velocity with respect to the first one. Hence, no preferred
inertial reference frame exists, and it is impossible to detect absolute motion.

Note that postulate 2 is required by postulate 1: if the speed of light were not the
same in all inertial frames, measurements of different speeds would make it possible to
distinguish between inertial frames; as a result, a preferred, absolute frame could be
identified, in contradiction to postulate 1.

Although the Michelson-Morley experiment was performed before Einstein
published his work on relativity, it is not clear whether or not Einstein was aware of the
details of the experiment. Nonetheless, the null result of the experiment can be readily
understood within the framework of Einstein’s theory. According to his principle of
relativity, the premises of the Michelson—-Morley experiment were incorrect. In the
process of trying to explain the expected results, we stated that when light traveled
against the ether wind its speed was ¢ — v, in accordance with the Galilean velocity
transformation equation. However, if the state of motion of the observer or of the
source has no influence on the value found for the speed of light, one always measures
the value to be ¢. Likewise, the light makes the return trip after reflection from the
mirror at speed ¢, not at speed ¢ + v. Thus, the motion of the Earth does not influence
the fringe pattern observed in the Michelson-Morley experiment, and a null result
should be expected.

If we accept Einstein’s theory of relativity, we must conclude that relative motion is
unimportant when measuring the speed of light. At the same time, we shall see that we
must alter our common-sense notion of space and time and be prepared for some
surprising consequences. It may help as you read the pages ahead to keep in mind that
our common-sense ideas are based on a lifetime of everyday experiences and not on
observations of objects moving at hundreds of thousands of kilometers per second. Thus,
these results will seem strange, but that is only because we have no experience with them.

39.4 Consequences of the Special
Theory of Relativity

Before we discuss the consequences of Einstein’s special theory of relativity, we must
first understand how an observer located in an inertial reference frame describes an
event. As mentioned earlier, an event is an occurrence describable by three space

3 A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English
translation of this article and other publications by Einstein, see the book by H. Lorentz, A. Einstein,
H. Minkowski, and H. Weyl, The Principle of Relativity, Dover, 1958.
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Albert Einstein

German-American Physicist
(1879-1955)

Einstein, one of the greatest
physicists of all times, was born
in Ulm, Germany. In 1905, at
the age of 26, he published four
scientific papers that
revolutionized physics. Two of
these papers were concerned
with what is now considered his
most important contribution: the
special theory of relativity.

In 1916, Einstein published
his work on the general theory
of relativity. The most dramatic
prediction of this theory is the
degree to which light is
deflected by a gravitational
field. Measurements made by
astronomers on bright stars in
the vicinity of the eclipsed Sun
in 1919 confirmed Einstein’s
prediction, and as a result
Einstein became a world
celebrity.

Einstein was deeply
disturbed by the development
of quantum mechanics in the
1920s despite his own role as
a scientific revolutionary. In
particular, he could never
accept the probabilistic view of
events in nature that is a central
feature of quantum theory. The
last few decades of his life were
devoted to an unsuccessful
search for a unified theory that
would combine gravitation and
electromagnetism. (AP Niels
Bohr Library)
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A PITFALL PREVENTION
39.2 Who’s Right?

You might wonder which observer
in Fig. 39.5 is correct concerning
the two lightning strikes. Both are
correct, because the principle of
relativity states that there is no
preferred inertial frame of reference.
Although the two observers reach
different conclusions, both are
correct in their own reference
frame because the concept of
simultaneity is not absolute. This,
in fact, is the central point of
relativity—any uniformly moving
frame of reference can be used to
describe events and do physics.

coordinates and one time coordinate. Observers in different inertial frames will
describe the same event with coordinates that have different values.

As we examine some of the consequences of relativity in the remainder of this
section, we restrict our discussion to the concepts of simultaneity, time intervals, and
lengths, all three of which are quite different in relativistic mechanics from what they
are in Newtonian mechanics. For example, in relativistic mechanics the distance
between two points and the time interval between two events depend on the frame of
reference in which they are measured. That is, in relativistic mechanics there is no
such thing as an absolute length or absolute time interval. Furthermore, events
at different locations that are observed to occur simultaneously in one frame
are not necessarily observed to be simultaneous in another frame moving
uniformly with respect to the first.

Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists that is the
same for all observers. In fact, Newton wrote that “Absolute, true, and mathematical
time, of itself, and from its own nature, flows equably without relation to anything
external.” Thus, Newton and his followers simply took simultaneity for granted. In his
special theory of relativity, Einstein abandoned this assumption.

Einstein devised the following thought experiment to illustrate this point. A boxcar
moves with uniform velocity, and two lightning bolts strike its ends, as illustrated in
Figure 39.5a, leaving marks on the boxcar and on the ground. The marks on the
boxcar are labeled A" and B’, and those on the ground are labeled A and B. An
observer O’ moving with the boxcar is midway between A’ and B’, and a ground
observer O is midway between A and B. The events recorded by the observers are the
striking of the boxcar by the two lightning bolts.

The light signals emitted from A and B at the instant at which the two bolts strike
reach observer O at the same time, as indicated in Figure 39.5b. This observer realizes
that the signals have traveled at the same speed over equal distances, and so rightly
concludes that the events at A and B occurred simultaneously. Now consider the same
events as viewed by observer O'. By the time the signals have reached observer O,
observer O' has moved as indicated in Figure 39.5b. Thus, the signal from B’ has
already swept past O', but the signal from A’ has not yet reached O'. In other words, O’
sees the signal from B’ before seeing the signal from A’. According to Einstein, the two
observers must find that light travels at the same speed. Therefore, observer O' concludes
that the lightning strikes the front of the boxcar before it strikes the back.

This thought experiment clearly demonstrates that the two events that appear
to be simultaneous to observer O do not appear to be simultaneous to observer O'.

v v
—_— —_—
0/
A/. () .BI A/. .B/
rm.ﬁﬁ [ ] L;uu:ﬁ r.ErEﬁ'_rnﬁﬁ [ ] e
A O B A (@] B

() (b)

Figure 39.5 (a) Two lightning bolts strike the ends of a moving boxcar. (b) The events
appear to be simultaneous to the stationary observer O, standing midway between A
and B. The events do not appear to be simultaneous to observer O', who claims that
the front of the car is struck before the rear. Note that in (b) the leftward-traveling light
signal has already passed O’ but the rightward-traveling signal has not yet reached O'.
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Active Figure 39.6 (a) A mirror is fixed to a moving vehicle, and a light pulse is sent
out by observer O’ at rest in the vehicle. (b) Relative to a stationary observer O standing
alongside the vehicle, the mirror and O’ move with a speed v. Note that what observer
O measures for the distance the pulse travels is greater than 2d. (c) The right triangle
for calculating the relationship between Azand A,

In other words,

two events that are simultaneous in one reference frame are in general not
simultaneous in a second frame moving relative to the first. That is, simultaneity is
not an absolute concept but rather one that depends on the state of motion of
the observer.

Einstein’s thought experiment demonstrates that two observers can disagree on the
simultaneity of two events. This disagreement, however, depends on the transit
time of light to the observers and, therefore, does not demonstrate the deeper
meaning of relativity. In relativistic analyses of high-speed situations, relativity shows
that simultaneity is relative even when the transit time is subtracted out. In fact, all of
the relativistic effects that we will discuss from here on will assume that we are ignoring
differences caused by the transit time of light to the observers.

Time Dilation

We can illustrate the fact that observers in different inertial frames can measure
different time intervals between a pair of events by considering a vehicle moving to the
right with a speed v, such as the boxcar shown in Figure 39.6a. A mirror is fixed to the
ceiling of the vehicle, and observer O at rest in the frame attached to the vehicle holds
a flashlight a distance d below the mirror. At some instant, the flashlight emits a pulse of
light directed toward the mirror (event 1), and at some later time after reflecting from
the mirror, the pulse arrives back at the flashlight (event 2). Observer O’ carries a clock
and uses it to measure the time interval Az, between these two events. (The subscript
stands for proper, as we shall see in a moment.) Because the light pulse has a speed ¢, the
time interval required for the pulse to travel from O’ to the mirror and back is
_ distance traveled  2d

Atp =

(39.5)
speed c

Now consider the same pair of events as viewed by observer O in a second frame, as
shown in Figure 39.6b. According to this observer, the mirror and flashlight are moving to
the right with a speed v, and as a result the sequence of events appears entirely different.
By the time the light from the flashlight reaches the mirror, the mirror has moved to the
right a distance v A¢/2, where Atis the time interval required for the light to travel from
O' to the mirror and back to O" as measured by O. In other words, O concludes that,
because of the motion of the vehicle, if the light is to hit the mirror, it must leave the
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the light pulse for various
speeds of the train.
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flashlight at an angle with respect to the vertical direction. Comparing Figure 39.6a and b,
we see that the light must travel farther in (b) than in (a). (Note that neither observer
“knows” that he or she is moving. Each is at rest in his or her own inertial frame.)
According to the second postulate of the special theory of relativity, both observers
must measure ¢ for the speed of light. Because the light travels farther according to O,
it follows that the time interval At measured by O is longer than the time interval A¢,
measured by O'. To obtain a relationship between these two time intervals, it is conve-
nient to use the right triangle shown in Figure 39.6c. The Pythagorean theorem gives

<CAt>2 (vAt>2 9
= +d
2 2

Solving for At gives
2d 2d
Al = = (39.6)
N2 — 2 [1 22
¢ -5
62
Because At/, = 2d/ ¢, we can express this result as
Time dilation At = T yAlp (39.7)
v
1 -
62
where
1
Y= —— (39.8)
1}2
==

4

Because 7y is always greater than unity, this result says that the time interval At

measured by an observer moving with respect to a clock is longer than the time

interval At, measured by an observer at rest with respect to the clock. This effect

Table 39.1 is known as time dilation.

We can see that time dilation is not observed in our everyday lives by considering
at Various Speeds the factor . This factor deviates significantly from a value of 1 only for very high

speeds, as shown in Figure 39.7 and Table 39.1. For example, for a speed of 0.1¢, the

s Y value of yis 1.005. Thus, there is a time dilation of only 0.5% at one-tenth the speed of
0.001 0 1.000 0005 light. Spfi:eds t.hat. we .encounter on an everyday basis are far slower than this, so we do
0.010 1.000 05 not see tm.ne dl?atlon in norn.nal 51tuat1.0ns. .

0.10 1.005 The time interval A¢, in Equations 39.5 and 39.7 is called the proper time
0.20 1.091 interval. (In German, Einstein used the term Eigenzeit, which means “own-time.”) In
0.30 1.048 y

0.40 1.091 20

0.50 1.155

0.60 1.250

0.70 1.400 15

0.80 1.667

0.90 2.294 10

0.92 2.552

0.94 2.931 }

0.96 3.571 5

0.98 5.025 /

0.99 7.089 1

0.995 10.01 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 v(10%ms)

0.999 22.37 Figure 39.7 Graph of y versus v. As the speed approaches that of light, v increases

rapidly.
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general, the proper time interval is the time interval between two events
measured by an observer who sees the events occur at the same point in space.

If a clock is moving with respect to you, the time interval between ticks of the
moving clock is observed to be longer than the time interval between ticks of an
identical clock in your reference frame. Thus, it is often said that a moving clock is
measured to run more slowly than a clock in your reference frame by a factor . This
is true for mechanical clocks as well as for the light clock just described. We can
generalize this result by stating that all physical processes, including chemical and
biological ones, are measured to slow down when those processes occur in a frame
moving with respect to the observer. For example, the heartbeat of an astronaut
moving through space would keep time with a clock inside the spacecraft. Both the
astronaut’s clock and heartbeat would be measured to slow down according to an
observer on Earth comparing time intervals with his own clock (although the astronaut
would have no sensation of life slowing down in the spacecraft).

Quick Quiz 39.3 Suppose the observer O’ on the train in Figure 39.6 aims her
flashlight at the far wall of the boxcar and turns it on and off, sending a pulse of light
toward the far wall. Both O" and O measure the time interval between when the pulse
leaves the flashlight and it hits the far wall. Which observer measures the proper time
interval between these two events? (a) O (b) O (c) both observers (d) neither observer.

QUiCk Quiz 39.4 A crew watches a movie that is two hours long in a space-
craft that is moving at high speed through space. Will an Earthbound observer, who is
watching the movie through a powerful telescope, measure the duration of the movie
to be (a) longer than, (b) shorter than, or (c) equal to two hours?

Strange as it may seem, time dilation is a verifiable phenomenon. An experiment
reported by Hafele and Keating provided direct evidence of time dilation.* Time
intervals measured with four cesium atomic clocks in jet flight were compared with
time intervals measured by Earth-based reference atomic clocks. In order to compare
these results with theory, many factors had to be considered, including periods of
speeding up and slowing down relative to the Earth, variations in direction of travel,
and the fact that the gravitational field experienced by the flying clocks was weaker
than that experienced by the Earth-based clock. The results were in good agreement
with the predictions of the special theory of relativity and can be explained in terms of
the relative motion between the Earth and the jet aircraft. In their paper, Hafele and
Keating stated that “Relative to the atomic time scale of the U.S. Naval Observatory, the
flying clocks lost 59 = 10 ns during the eastward trip and gained 273 * 7 ns during
the westward trip. . . . These results provide an unambiguous empirical resolution of
the famous clock paradox with macroscopic clocks.”

Another interesting example of time dilation involves the observation of muons,
unstable elementary particles that have a charge equal to that of the electron and a
mass 207 times that of the electron. (We will study the muon and other particles in
Chapter 46.) Muons can be produced by the collision of cosmic radiation with atoms
high in the atmosphere. Slow-moving muons in the laboratory have a lifetime which is
measured to be the proper time interval Ali, = 2.2 us. If we assume that the speed of
atmospheric muons is close to the speed of light, we find that these particles can travel
a distance of approximately (3.0 X 108 m/s) (2.2 X 107%s) = 6.6 X 102 m before they
decay (Fig. 39.8a). Hence, they are unlikely to reach the surface of the Earth from

4 J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains
Observed,” Science, 177:168, 1972.
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A PITFALL PREVENTION

39.3 The Proper Time
Interval

It is very important in relativistic
calculations to correctly identify
the observer who measures the
proper time interval. The proper
time interval between two events
is always the time interval mea-
sured by an observer for whom
the two events take place at the
same position.

Muon is created
~6.6x10°m

Muon decays

(a)

- Muon is created

~48%10°m

Muon decays
(b)

Figure 39.8 (a) Without relativis-
tic considerations, muons created
in the atmosphere and traveling
downward with a speed of 0.99¢
travel only about 6.6 X 102 m
before decaying with an average
lifetime of 2.2 us. Thus, very few
muons reach the surface of the
Earth. (b) With relativistic
considerations, the muon’s lifetime
is dilated according to an observer
on Earth. As a result, according to
this observer, the muon can travel
about 4.8 X 10% m before decaying.
This results in many of them
arriving at the surface.
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Figure 39.9 Decay curves for muons
at rest and for muons traveling at a

((us) —— speed of 0.999 4c.

high in the atmosphere where they are produced. However, experiments show that a
large number of muons do reach the surface. The phenomenon of time dilation
explains this effect. As measured by an observer on Earth, the muons have a dilated
lifetime equal to y At,. For example, for v = 0.99¢, y = 7.1 and y At, = 16 ps. Hence,
the average distance traveled by the muons in this time as measured by an observer
on Earth is approximately (0.99) (3.0 X 108 m/s) (16 X 107 %s) =~ 4.8 X 103 m, as indi-
cated in Figure 39.8b.

In 1976, at the laboratory of the European Council for Nuclear Research (CERN)
in Geneva, muons injected into a large storage ring reached speeds of approximately
0.999 4¢. Electrons produced by the decaying muons were detected by counters around
the ring, enabling scientists to measure the decay rate and hence the muon lifetime.
The lifetime of the moving muons was measured to be approximately 30 times as long
as that of the stationary muon (Fig. 39.9), in agreement with the prediction of relativity

to within two parts in a thousand.

Example 39.1 What Is the Period of the Pendulum?

The period of a pendulum is measured to be 3.00 s in the
reference frame of the pendulum. What is the period when
measured by an observer moving at a speed of 0.950¢ rela-
tive to the pendulum?

Solution To conceptualize this problem, let us change
frames of reference. Instead of the observer moving at 0.950c,
we can take the equivalent point of view that the observer is at
rest and the pendulum is moving at 0.950¢ past the stationary
observer. Hence, the pendulum is an example of a clock
moving at high speed with respect to an observer and we can
categorize this problem as one involving time dilation.

To analyze the problem, note that the proper time
interval, measured in the rest frame of the pendulum, is
At, = 3.00s. Because a clock moving with respect to an
observer is measured to run more slowly than a stationary
clock by a factor 7y, Equation 39.7 gives

1

(0.9500)2
2

At = yAt, =

1
Atp = Atl,
1 — V1 — 0.902
C

= (3.20)(3.00s) = 9.60s

To finalize this problem, we see that indeed a moving
pendulum is measured to take longer to complete a period

than a pendulum at rest does. The period increases by a
factor of y = 3.20. We see that this is consistent with Table
39.1, where this value lies between those for vy for v/¢ = 0.94
and v/¢ = 0.96.

What If? What if we increase the speed of the observer by
5.00%?7? Does the dilated time interval increase by 5.00%?

Answer Based on the highly nonlinear behavior of y as a
function of v in Figure 39.7, we would guess that the
increase in At would be different from 5.00%. Increasing v
by 5.00% gives us

Unew = (1.050 0) (0.950¢) = 0.997 5¢

(Because vy varies so rapidly with v when v is this large, we will
keep one additional significant figure until the final answer.)
If we perform the time dilation calculation again, we find that

1

~ (0.997 50)*
2

1
At=yAt, = Aty = At
’ : P 1= 09950 '

4

(14.15)(3.00's) = 42.5 s

Thus, the 5.00% increase in speed has caused over a 300%
increase in the dilated time!
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Example 39.2 How Long Was Your Trip?

Suppose you are driving your car on a business trip and
are traveling at 30 m/s. Your boss, who is waiting at your
destination, expects the trip to take 5.0 h. When you

SECTION 39.4 » Consequences of the Special Theory of Relativity

If you try to determine this value on your calculator, you
will probably obtain y = 1. However, if we perform a
binomial expansion, we can more precisely determine the

1257

arrive late, your excuse is that your car clock registered value as
the passage of 5.0 h but that you were driving fast and so

your clock ran more slowly than your boss’s clock. If your y=(01-10"""12~1+ %(10714) =1+50x10""

car clock actually did indicate a 5.0-h trip, how much time
passed on your boss’s clock, which was at rest on the

Earth? not much different from 1.

This result indicates that at typical automobile speeds, 7 is

Applying Equation 39.7, we find A¢, the time interval

Solution We begin by calculating vy from Equation 39.8:

1 At=yAy= (1 +5.0 % 1071%)(5.0 h)

1
Y= 2 - 1 2
1/1_v_ \/1_ (3 X 10" m/s) =50h+25x10Mh =
2 (3 X 108 m/s)?2
1

measured by your boss, to be

5.0 h + 0.09 ns

Your boss’s clock would be only 0.09 ns ahead of your car

The Twin Paradox

An intriguing consequence of time dilation is the so-called twin paradox (Fig. 39.10).
Consider an experiment involving a set of twins named Speedo and Goslo. When they
are 20 yr old, Speedo, the more adventuresome of the two, sets out on an epic journey
to Planet X, located 20 ly from the Earth. (Note that 1 lightyear (ly) is the distance
light travels through free space in 1 year.) Furthermore, Speedo’s spacecraft is capable
of reaching a speed of 0.95¢ relative to the inertial frame of his twin brother
back home. After reaching Planet X, Speedo becomes homesick and immediately
returns to the Earth at the same speed 0.95¢. Upon his return, Speedo is shocked to
discover that Goslo has aged 42 yr and is now 62 yr old. Speedo, on the other hand,
has aged only 13 yr.

At this point, it is fair to raise the following question—which twin is the traveler and
which is really younger as a result of this experiment? From Goslo’s frame of reference,
he was at rest while his brother traveled at a high speed away from him and then came
back. According to Speedo, however, he himself remained stationary while Goslo and
the Earth raced away from him and then headed back. This leads to an apparent

A
'HH

Speedo Goslo Speedo Goslo
() (b)

Figure 39.10 (a) As one twin leaves his brother on the Earth, both are the same age.
(b) When Speedo returns from his journey to Planet X, he is younger than his twin Goslo.
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A PITFALL PREVENTION
39.4 The Proper Length

As with the proper time interval,
it is very important in relativistic
calculations to correctly identify
the observer who measures the
proper length. The proper
length between two points in
space is always the length mea-
sured by an observer at rest with
respect to the points. Often the
proper time interval and the
proper length are not measured
by the same observer.

Length contraction

contradiction due to the apparent symmetry of the observations. Which twin has
developed signs of excess aging?

The situation in our current problem is actually not symmetrical. To resolve this
apparent paradox, recall that the special theory of relativity describes observations
made in inertial frames of reference moving relative to each other. Speedo,
the space traveler, must experience a series of accelerations during his journey
because he must fire his rocket engines to slow down and start moving back
toward Earth. As a result, his speed is not always uniform, and consequently he
is not in an inertial frame. Therefore, there is no paradox—only Goslo, who is
always in a single inertial frame, can make correct predictions based on special
relativity. During each passing year noted by Goslo, slightly less than 4 months
elapses for Speedo.

Only Goslo, who is in a single inertial frame, can apply the simple time-dilation
formula to Speedo’s trip. Thus, Goslo finds that instead of aging 42 yr, Speedo ages
only (1 — v2/¢?)1/%2(42 yr) = 13 yr. Thus, according to Goslo, Speedo spends 6.5 yr
traveling to Planet X and 6.5 yr returning, for a total travel time of 13 yr, in agreement
with our earlier statement.

Quick Quiz 39.5 Suppose astronauts are paid according to the amount
of time they spend traveling in space. After a long voyage traveling at a speed
approaching ¢, would a crew rather be paid according to (a) an Earth-based clock,
(b) their spacecraft’s clock, or (c) either clock?

Length Contraction

The measured distance between two points also depends on the frame of reference.
The proper length L, of an object is the length measured by someone at rest
relative to the object. The length of an object measured by someone in a reference
frame that is moving with respect to the object is always less than the proper length.
This effect is known as length contraction.

Consider a spacecraft traveling with a speed v from one star to another. There
are two observers: one on the Earth and the other in the spacecraft. The observer
at rest on the Earth (and also assumed to be at rest with respect to the two stars)
measures the distance between the stars to be the proper length L. According to
this observer, the time interval required for the spacecraft to complete the voyage is
At = L,/v. The passages of the two stars by the spacecraft occur at the same
position for the space traveler. Thus, the space traveler measures the proper time
interval Atp. Because of time dilation, the proper time interval is related to
the Earth-measured time interval by Alp = At/7vy. Because the space traveler
reaches the second star in the time Atp, he or she concludes that the distance L
between the stars is

t
L=v Atp =y—
Y
Because the proper length is LP = v At, we see that
IJP _ 'U

LA\l -2
y 7 c

L=

(89.9)

where V1 — v2/¢? is a factor less than unity. If an object has a proper length L,
when it is measured by an observer at rest with respect to the object, then when
it moves with speed v in a direction parallel to its length, its length L is
measured to be shorter according to L = L,\1 — v%/c? = Ly/vy.

Windnwuan ‘



SECTION 39.4 » Consequences of the Special Theory of Relativity 1259

For example, suppose that a meter stick moves past a stationary Earth observer with
speed v, as in Figure 39.11. The length of the stick as measured by an observer in a frame
attached to the stick is the proper length L, shown in Figure 39.11a. The length of the
stick L measured by the Earth observer is shorter than L, by the factor (1 — v?/ )12,
Note that length contraction takes place only along the direction of motion.

The proper length and the proper time interval are defined differently. The proper
length is measured by an observer for whom the end points of the length remain fixed in
space. The proper time interval is measured by someone for whom the two events take
place at the same position in space. As an example of this point, let us return to the
decaying muons moving at speeds close to the speed of light. An observer in the muon’s
reference frame would measure the proper lifetime, while an Earth-based observer would
measure the proper length (the distance from creation to decay in Figure 39.8). In the
muon’s reference frame, there is no time dilation but the distance of travel to the surface
is observed to be shorter when measured in this frame. Likewise, in the Earth observer’s
reference frame, there is time dilation, but the distance of travel is measured to be the
proper length. Thus, when calculations on the muon are performed in both frames, the
outcome of the experiment in one frame is the same as the outcome in the other frame—
more muons reach the surface than would be predicted without relativistic effects.

Quick Quiz 39.6 vou are packing for a trip to another star. During the
journey, you will be traveling at 0.99¢. You are trying to decide whether you should buy
smaller sizes of your clothing, because you will be thinner on your trip, due to length
contraction. Also, you are considering saving money by reserving a smaller cabin to sleep
in, because you will be shorter when you lie down. Should you (a) buy smaller sizes of
clothing, (b) reserve a smaller cabin, (c) do neither of these, or (d) do both of these?

Quick Quiz 39.7 You are observing a spacecraft moving away from you. You
measure it to be shorter than when it was at rest on the ground next to you. You also
see a clock through the spacecraft window, and you observe that the passage of time on
the clock is measured to be slower than that of the watch on your wrist. Compared to
when the spacecraft was on the ground, what do you measure if the spacecraft turns
around and comes foward you at the same speed? (a) The spacecraft is measured to be
longer and the clock runs faster. (b) The spacecraft is measured to be longer and the
clock runs slower. (c¢) The spacecraft is measured to be shorter and the clock runs
faster. (d) The spacecraft is measured to be shorter and the clock runs slower.

Space-Time Graphs
It is sometimes helpful to make a space—time graph, in which ct is the ordinate and

position x is the abscissa. The twin paradox is displayed in such a graph in Figure 39.12

ct

World-line of Speedo

World-line

of Goslo World-line of light beam

Figure 39.12 The twin paradox on a
space—time graph. The twin who stays on
the Earth has a world-line along the ¢t axis.
The path of the traveling twin through
space—time is represented by a world-line
> X that changes direction.
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Active Figure 39.11 (a) A meter
stick measured by an observer in a
frame attached to the stick (that is,
both have the same velocity) has its
proper length L. (b) The stick
measured by an observer in a frame
in which the stick has a velocity v
relative to the frame is measured to
be shorter than its proper length
L, by a factor (1 — v2/c?)V/2,

7 At the Active Figures link
at http://www.pse6.com, you
can view the meter stick from
the points of view of two
observers to compare the
measured length of the stick.
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from the point of view of Goslo. A path through space-time is called a world-line. At
the origin, the world-lines of Speedo and Goslo coincide because the twins are in the
same location at the same time. After Speedo leaves on his trip, his world-line diverges
from that of his brother. Goslo’s world-line is vertical because he remains fixed in
location. At their reunion, the two world-lines again come together. Note that it would
be impossible for Speedo to have a world-line that crossed the path of a light beam that
left the Earth when he did. To do so would require him to have a speed greater than ¢
(not possible, as shown in Sections 39.6 and 39.7).

World-lines for light beams are diagonal lines on space-time graphs, typically
drawn at 45° to the right or left of vertical (assuming that the x and ¢t axes have the
same scales), depending on whether the light beam is traveling in the direction of
increasing or decreasing x. These two world-lines mean that all possible future events
for Goslo and Speedo lie within two 45° lines extending from the origin. Either twin’s
presence at an event outside this “light cone” would require that twin to move at a
speed greater than ¢, which we have said is not possible. Also, the only past events that
Goslo and Speedo could have experienced occurred within two similar 45° world-lines

that approach the origin from below the x axis.

Example 39.3 The Contraction of a Spacecraft

A spacecraft is measured to be 120.0 m long and 20.0 m
in diameter while at rest relative to an observer. If
this spacecraft now flies by the observer with a speed of
0.99¢, what length and diameter does the observer
measure?

Solution From Equation 39.9, the length measured by the

Example 39.4 The Pole-in-the-Barn Paradox

The twin paradox, discussed earlier, is a classic “paradox”
in relativity. Another classic “paradox” is this: Suppose a
runner moving at 0.75¢ carries a horizontal pole 15 m
long toward a barn that is 10 m long. The barn has front
and rear doors. An observer on the ground can instantly
and simultaneously open and close the two doors by
remote control. When the runner and the pole are inside
the barn, the ground observer closes and then opens both
doors so that the runner and pole are momentarily
captured inside the barn and then proceed to exit the
barn from the back door. Do both the runner and the
ground observer agree that the runner makes it safely
through the barn?

Solution From our everyday experience, we would be
surprised to see a 15-m pole fit inside a 10-m barn. But the
pole is in motion with respect to the ground observer, who
measures the pole to be contracted to a length Lpgle,
where

2
Lpole = Lp Vl - Lg = (15m) V1 — (075)2 =99m
4

Thus, the ground observer measures the pole to be slightly
shorter than the barn and there is no problem with momen-
tarily capturing the pole inside it. The “paradox” arises
when we consider the runner’s point of view. The runner

observer is

2 0.990)*
L=1,\1-2 = 200m1 -0 _ 7y
¢ c
The diameter measured by the observer is still 20.0 m because
the diameter is a dimension perpendicular to the motion and
length contraction occurs only along the direction of motion.

sees the barn contracted to

2
Lbam = Lﬁ \/1 - % = (10 m) 1 - (075)2 = 6.6m

Because the pole is in the rest frame of the runner, the
runner measures it to have its proper length of 15 m. How
can a 15-m pole fit inside a 6.6-m barn? While this is the
classic question that is often asked, this is not the question
we have asked, because it is not the important question. We
asked if the runner can make it safely through the barn.

The resolution of the “paradox” lies in the relativity of
simultaneity. The closing of the two doors is measured to be
simultaneous by the ground observer. Because the doors are
at different positions, however, they do not close simultane-
ously as measured by the runner. The rear door closes and
then opens first, allowing the leading edge of the pole to
exit. The front door of the barn does not close until the
trailing edge of the pole passes by.

We can analyze this using a space-time graph. Figure
39.13a is a space-time graph from the ground observer’s
point of view. We choose x = 0 as the position of the front
door of the barn and ¢ = 0 as the instant at which the leading
end of the pole is located at the front door of the barn. The
world-lines for the two ends of the barn are separated by 10 m
and are vertical because the barn is not moving relative to this
observer. For the pole, we follow two tilted world-lines, one
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Figure 39.13 (Example 39.4) Space-time graphs for the pole-in-the-barn paradox.
(a) From the ground observer’s point of view, the world-lines for the front and back
doors of the barn are vertical lines. The world-lines for the ends of the pole are
tilted and are 9.9 m apart horizontally. The front door of the barn is at x = 0, and
the leading end of the pole enters the front door at ¢ = 0. The entire pole is inside
the barn at the time indicated by the dashed line. (b) From the runner’s point of
view, the world-lines for the ends of the pole are vertical. The barn is moving in the
negative direction, so the world-lines for the front and back doors are tilted to the
left. The leading end of the pole exits the back door before the trailing end arrives

at the front door.

for each end of the moving pole. These world-lines are 9.9 m
apart horizontally, which is the contracted length seen by the
ground observer. As seen in Figure 39.13a, at one instant, the
pole is entirely within the barn.

Figure 39.13b shows the space-time graph according to
the runner. Here, the world-lines for the pole are separated by
15 m and are vertical because the pole is at rest in the runner’s
frame of reference. The barn is hurtling toward the runner, so
the world-lines for the front and rear doors of the barn are
tilted in the opposite direction compared to Figure 39.13a.
The world-lines for the barn are separated by 6.6 m, the
contracted length as seen by the runner. Notice that the front
of the pole leaves the rear door of the barn long before the
back of the pole enters the barn. Thus, the opening of the
rear door occurs before the closing of the front door.

From the ground observer’s point of view, the time at
which the trailing end of the pole enters the barn is found
from

A . 13.
At:t—O:t:izggm 3.2m

v 0.75¢ ¢

Thus, the pole should be completely inside the barn at a
time corresponding to ¢f = 13.2 m. This is consistent with
the point on the ¢f axis in Figure 39.13a where the pole is
inside the barn.

From the runner’s point of view, the time at which the
leading end of the pole leaves the barn is found from

Ax 6.6 m 8.8 m
At=t-0=t=—= =
v 0.75¢ c

leading to ¢t = 8.8 m. This is consistent with the point on
the ¢t axis in Figure 39.13b where the back door of the barn
arrives at the leading end of the pole. Finally, the time at
which the trailing end of the pole enters the front door of
the barn is found from

At:t—OZt:ﬂ*wm 20 m

v 0.75¢ - c

This gives ¢t = 20 m, which agrees with the instant shown in
Figure 39.13b.

Zﬁ Investigate the pole-in-the-barn paradox at the Interactive Worked Example link at http://www.pse6.com.

Example 39.5 A Voyage to Sirius

An astronaut takes a trip to Sirius, which is located a
distance of 8 lightyears from the Earth. The astronaut
measures the time of the one-way journey to be 6 yr. If the
spaceship moves at a constant speed of 0.8¢, how can the 8ly
distance be reconciled with the 6-yr trip time measured by
the astronaut?

Solution The distance of 8 ly represents the proper length
from the Earth to Sirius measured by an observer seeing
both objects nearly at rest. The astronaut sees Sirius
approaching her at 0.8¢ but also sees the distance

contracted to

81y v? (0.8¢)2
- (81y) 1—7= (81y) 1—T=5ly

Thus, the travel time measured on her clock is

At = 4 = bly
v 0.8¢

=6yr

Note that we have used the value for the speed of light as
c=11ly/yr.
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What If? What if this trip is observed with a very powerful
telescope by a technician in Mission Control on Earth? At
what time will this technician see that the astronaut has
arrived at Sirius?

Answer The time interval that the technician will measure
for the astronaut to arrive is

i_ 8ly

At =
v 0.8¢

=10yr

In order for the technician to see the arrival, the light from
the scene of the arrival must travel back to Earth and enter

the telescope. This will require a time interval of

d 8ly

U 4

=8yr

Thus, the technician sees the arrival after 10 yr + 8 yr =
18 yr. Notice that if the astronaut immediately turns
around and comes back home, she arrives, according to
the technician, 20 years after leaving, only 2 years after he
saw her arrive! In addition, she would have aged by only
12 years.

S S’
y y — Y
P( event) Q(event)

/\ /\
vt —>—
[

o x O

Figure 39.14 Events occur at
points Pand Q and are observed by
an observer at rest in the S frame
and another in the S’ frame, which
is moving to the right with a speed v.

The Relativistic Doppler Effect

Another important consequence of time dilation is the shift in frequency
found for light emitted by atoms in motion as opposed to light emitted by atoms
at rest. This phenomenon, known as the Doppler effect, was introduced in Chapter
17 as it pertains to sound waves. In the case of sound, the motion of the source
with respect to the medium of propagation can be distinguished from the motion
of the observer with respect to the medium. Light waves must be analyzed
differently, however, because they require no medium of propagation, and no
method exists for distinguishing the motion of a light source from the motion of
the observer.

If a light source and an observer approach each other with a relative speed v, the
frequency f,s measured by the observer is

o = V1 + v/c )
ObS m source

where fiource is the frequency of the source measured in its rest frame. Note that this
relativistic Doppler shift equation, unlike the Doppler shift equation for sound,
depends only on the relative speed v of the source and observer and holds for relative
speeds as great as ¢. As you might expect, the equation predicts that fops > fsource When
the source and observer approach each other. We obtain the expression for the case in
which the source and observer recede from each other by substituting negative values
for vin Equation 39.10.

The most spectacular and dramatic use of the relativistic Doppler effect is the
measurement of shifts in the frequency of light emitted by a moving astronomical
object such as a galaxy. Light emitted by atoms and normally found in the extreme
violet region of the spectrum is shifted toward the red end of the spectrum for atoms
in other galaxies—indicating that these galaxies are receding from us. The American
astronomer Edwin Hubble (1889-1953) performed extensive measurements of this red
shift to confirm that most galaxies are moving away from us, indicating that the
Universe is expanding.

(89.10)

39.5 The Lorentz Transformation Equations

Suppose an event that occurs at some point P is reported by two observers, one
at rest in a frame S and another in a frame S’ that is moving to the right with
speed v as in Figure 39.14. The observer in S reports the event with space—time
coordinates (x, y, z, ), while the observer in S’ reports the same event using the
coordinates (x', y', z', t'). If two events occur at P and Q, Equation 39.1
predicts that Ax = Ax’, that is, the distance between the two points in space
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at which the events occur does not depend on motion of the observer. Because
this is contradictory to the notion of length contraction, the Galilean trans-
formation is not valid when v approaches the speed of light. In this section, we
state the correct transformation equations that apply for all speeds in the range
0=v<ec

The equations that are valid for all speeds and enable us to transform coordinates
from S to S’ are the Lorentz transformation equations:

x = y(x — vi) Yy =y 2=z t':y<t—%x> (39.11)
C

These transformation equations were developed by Hendrik A. Lorentz (1853-1928)
in 1890 in connection with electromagnetism. However, it was Einstein who recognized
their physical significance and took the bold step of interpreting them within the
framework of the special theory of relativity.

Note the difference between the Galilean and Lorentz time equations. In
the Galilean case, ¢ = ¢, but in the Lorentz case the value for ¢" assigned to an event by
an observer O’ in the S’ frame in Figure 39.14 depends both on the time ¢and on the
coordinate x as measured by an observer O in the S frame. This is consistent with the
notion that an event is characterized by four space-time coordinates (x, y, z, t). In
other words, in relativity, space and time are not separate concepts but rather are
closely interwoven with each other.

If we wish to transform coordinates in the S’ frame to coordinates in the S frame,
we simply replace v by — v and interchange the primed and unprimed coordinates in
Equations 39.11:

x =7y + ut') y=y' z2=17 t = ‘y(t’ + %x’) (39.12)
c

When v << ¢, the Lorentz transformation equations should reduce to the
Galilean equations. To verify this, note that as v approaches zero, v/¢c << 1; thus,
v— 1, and Equations 39.11 reduce to the Galilean space-time transformation
equations:

X' =x—v y =y Z =z =1

In many situations, we would like to know the difference in coordinates between
two events or the time interval between two events as seen by observers O and O'. We
can accomplish this by writing the Lorentz equations in a form suitable for describing
pairs of events. From Equations 39.11 and 39.12, we can express the differences
between the four variables x, x', ¢, and ¢’ in the form

Ax' = ‘y(AX — v At) (39.13)
v S— S’

At' =y At — —5 Ax
¢

Ax = y(Ax" + vAt) (39.14)
v S"—S

At =y At + — Ax’
¢

where Ax" = x% — x] and At' =t — ¢] are the differences measured by observer O’
and Ax = x9 — x; and At = {9 — ¢} are the differences measured by observer O. (We
have not included the expressions for relating the y and z coordinates because they are
unaffected by motion along the x direction.’)

5 Although relative motion of the two frames along the x axis does not change the y and z coordi-

nates of an object, it does change the y and z velocity components of an object moving in either frame,
as noted in Section 39.6.
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Example 39.6 Simultaneity and Time Dilation Revisited

Use the Lorentz transformation equations in difference
form to show that

(A) simultaneity is not an absolute concept and that

(B) a moving clock is measured to run more slowly than a
clock that is at rest with respect to an observer.

Solution (A) Suppose that two events are simultaneous
and separated in space such that A¢' =0 and Ax' # 0
according to an observer O’ who is moving with speed v
relative to O. From the expression for A¢ given in
Equation 39.14, we see that in this case the time interval
At measured by observer Ois At = yv Ax'/c?. That is, the

time interval for the same two events as measured by O is
nonzero, and so the events do not appear to be simultane-
ous to O.

(B) Suppose that observer O’ carries a clock that he uses
to measure a time interval A¢’. He finds that two events occur
at the same place in his reference frame (Ax’ = 0) but at
different times (At¢’ # 0). Observer O’ is moving with speed
v relative to O, who measures the time interval between the
events to be At. In this situation, the expression for A¢ given
in Equation 39.14 becomes At = vy A¢'. This is the equation
for time dilation found earlier (Eq. 39.7), where A¢' = Aty is
the proper time measured by the clock carried by observer
O'. Thus, O measures the moving clock to run slow.

39.6 The Lorentz Velocity Transformation

Equations

Suppose two observers in relative motion with respect to each other are both observing

the motion of an object. Previously, we defined an event as occurring at an instant of

time. Now, we wish to interpret the “event” as the motion of the object. We know that the

Galilean velocity transformation (Eq. 39.2) is valid for low speeds. How do the observers’

measurements of the velocity of the object relate to each other if the speed of the object

is close to that of light? Once again S’ is our frame moving at a speed v relative to S.

Suppose that an object has a velocity component u;, measured in the S’ frame, where

Using Equation 39.11, we have

= & (39.15)
u, = —- .
oA
dx' = y(dx — vdi)
v
dt' = y(dt - —2dx>
¢

Substituting these values into Equation 39.15 gives

Uy =

x _
dc'  dx—ovd  dt
dt’ v v dx

di——5de 11— —5—
¢ c® dt

But dx/dt is just the velocity component u, of the object measured by an observer in S,

and so this expression becomes

Lorentz velocity transformation
forS— S’

ul, = ——— (39.16)

If the object has velocity components along the y and z axes, the components as
measured by an observer in S” are

’

Uy = —F————— and U, = —F4————
UV
(1) (-

uy Uy

U U
2

> (39.17)

4
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Note that u;
relative velocity is along the x axis.

When v is much smaller than ¢ (the nonrelativistic case), the denominator of

and u, do not contain the parameter v in the numerator because the

Equation 39.16 approaches unity, and so wy = u, —
transformation equation. In another extreme, when u, = ¢, Equation 39.16 becomes

c(l v)
, c— v ¢
u, = =

From this result, we see that a speed measured as ¢ by an observer in S is also measured
as ¢ by an observer in S’—independent of the relative motion of S and S'. Note that

v, which is the Galilean velocity

this conclusion is consistent with Einstein’s second postulate—that the speed of light
must be ¢ relative to all inertial reference frames. Furthermore, we find that the speed
of an object can never be measured as larger than ¢. That is, the speed of light is the
ultimate speed. We return to this point later.

To obtain u, in terms of u}, we replace v by — vin Equation 39.16 and interchange
the roles of u, and u}:

(39.18)

Qu ick Qu iz 39.8 youare driving on a freeway at a relativistic speed. Straight
ahead of you, a technician standing on the ground turns on a searchlight and a beam
of light moves exactly vertically upward, as seen by the technician. As you observe the
beam of light, you measure the magnitude of the vertical component of its velocity as
(a) equal to ¢ (b) greater than ¢ (c) less than c.

QUiCk QUiZ 39.9 Consider the situation in Quick Quiz 39.8 again. If the
technician aims the searchlight directly at you instead of upward, you measure the
magnitude of the horizontal component of its velocity as (a) equal to ¢ (b) greater than
¢ (c) less than c.

Example 39.7 Relative Velocity of Two Spacecraft

A\ PITFALL PREVENTION

39.5 What Can the
Observers Agree On?

We have seen several measure-
ments that the two observers O
and O’ do not agree on: (1) the
time interval between events that
take place in the same position in
one of the frames, (2) the distance
between two points that remain
fixed in one of their frames,
(8) the velocity components of a
moving particle, and (4) whether
two events occurring at different
locations in both frames are simul-
taneous or not. Note that the two
observers can agree on (1) their
relative speed of motion v with
respect to each other, (2) the
speed ¢ of any ray of light, and
(3) the simultaneity of two events
which take place at the same posi-
tion and time in some frame.

Two spacecraft A and B are moving in opposite directions,
as shown in Figure 39.15. An observer on the FEarth
measures the speed of craft A to be 0.750¢ and the speed of
craft B to be 0.850¢. Find the velocity of craft B as observed
by the crew on craft A.

’

Ys (attached ) S’ (attached to A)
to the Earth) 0.750¢ -0.850¢
—_— D
A B
0 x o’ x’

Figure 39.15 (Example 39.7) Two spacecraft A and B move in
opposite directions. The speed of B relative to A is less than cand
is obtained from the relativistic velocity transformation equation.

Solution To conceptualize this problem, we carefully
identify the observers and the event. The two observers
are on the Earth and on spacecraft A. The event is the
motion of spacecraft B. Because the problem asks to find
an observed velocity, we categorize this problem as one
requiring the Lorentz velocity transformation. To analyze
the problem, we note that the Earth observer makes two
measurements, one of each spacecraft. We identify this
observer as being at rest in the S frame. Because the
velocity of spacecraft B is what we wish to measure, we
identify the speed wu, as —0.850c. The velocity of
spacecraft A is also the velocity of the observer at rest in
the S’ frame, which is attached to the spacecraft, relative
to the observer at rest in S. Thus, v = 0.750c. Now we
can obtain the velocity u, of craft B relative to craft A
by using Equation 39.16:
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, Uy — U —0.850¢ — 0.750¢
ul = =
x Uy (= 0.8500) (0.7500)
== 1= 2
¢ ¢
= —0977c

To finalize this problem, note that the negative sign indicates
that craft B is moving in the negative x direction as observed
by the crew on craft A. Is this consistent with your expectation
from Figure 39.15? Note that the speed is less than ¢. That is,
an object whose speed is less than ¢ in one frame of reference
must have a speed less than ¢ in any other frame. (If
the Galilean velocity transformation equation were used in

Example 39.8 The Speeding Motorcycle

Imagine a motorcycle moving with a speed 0.80c¢ past a
stationary observer, as shown in Figure 39.16. If the rider

Example 39.9 Relativistic Leaders of the Pack

Two motorcycle pack leaders named David and Emily are
racing at relativistic speeds along perpendicular paths, as
shown in Figure 39.17. How fast does Emily recede as seen
by David over his right shoulder?

Solution Figure 39.17 represents the situation as seen
by a police officer at rest in frame S, who observes the

Police officer at
restin S

o

¢

this example, we would find that u, = u, — v= — 0.850¢ —
0.750¢ = — 1.60¢, which is impossible. The Galilean transfor-
mation equation does not work in relativistic situations.)

What If? What if the two spacecraft pass each other? Now
what is their relative speed?

Answer The calculation using Equation 39.16 involves only
the velocities of the two spacecraft and does not depend on
their locations. After they pass each other, they have the
same velocities, so the velocity of craft B as observed by the
crew on craft A is the same, —0.977¢. The only difference
after they pass is that B is receding from A whereas it was
approaching A before it passed.

tosses a ball in the forward direction with a speed of 0.70¢
relative to himself, what is the speed of the ball relative to
the stationary observer?

Solution The speed of the motorcycle relative to the
stationary observer is v = 0.80¢. The speed of the ball in the
frame of reference of the motorcyclist is uy = 0.70¢. There-
fore, the speed wu, of the ball relative to the stationary
observer is

u, + v 0.70¢ + 0.80¢
e ’ (0700 (0800 096¢
1+ ux;} L+ L0 { .80¢
c C

Figure 39.16 (Example 39.8) A motorcyclist moves past a
stationary observer with a speed of 0.80¢and throws a ball in
the direction of motion with a speed of 0.70¢ relative to himself.

following:

David: uy, = 0.75¢ uy =0

Emily: Uy =10 uy = —0.90¢
To calculate Emily’s speed of recession as seen by David, we

take S’ to move along with David and then calculate u) and

Figure 39.17 (Example 39.9) David moves
to the east with a speed 0.75¢ relative to the
police officer, and Emily travels south at a
speed 0.90¢ relative to the officer.
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), for Emily using Equations 39.16 and 39.17:

Thus, the speed of Emily as observed by David is

R N R e 0.75¢ _ _ _yas w =N (w)? + (u)? = V(=0.7502 + (—0.600)2
Uy U (0)(0.75¢)
I==5 1-75 = 0.96¢
A h _ L?c)? (—0.90¢) Note that this .sI.)eed is less than ¢, as required by the special
. ) _ c theory of relativity.

= (1 ~ W)) (1 ~ (0)(0.750))

Y c? c?

= —0.60¢

Zﬁ Investigate this situation with various speeds of David and Emily at the Interactive Worked Example link at

http://www.pse6.com.

39.7 Relativistic Linear Momentum and
the Relativistic Form of Newton’s Laws

We have seen that in order to describe properly the motion of particles within
the framework of the special theory of relativity, we must replace the Galilean
transformation equations by the Lorentz transformation equations. Because the laws
of physics must remain unchanged under the Lorentz transformation, we must
generalize Newton’s laws and the definitions of linear momentum and energy to
conform to the Lorentz transformation equations and the principle of relativity.
These generalized definitions should reduce to the classical (nonrelativistic) defini-
tions for v << ¢.

First, recall that the law of conservation of linear momentum states that when two
particles (or objects that can be modeled as particles) collide, the total momentum
of the isolated system of the two particles remains constant. Suppose that we observe
this collision in a reference frame S and confirm that the momentum of the system
is conserved. Now imagine that the momenta of the particles are measured by an
observer in a second reference frame S’ moving with velocity v relative to
the first frame. Using the Lorentz velocity transformation equation and the classical
definition of linear momentum, p = mu (where u is the velocity of a particle),
we find that linear momentum is zot measured to be conserved by the observer in S'.
However, because the laws of physics are the same in all inertial frames, linear
momentum of the system must be conserved in all frames. We have a contradiction.
In view of this contradiction and assuming that the Lorentz velocity transformation
equation is correct, we must modify the definition of linear momentum to satisfy the
following conditions:

® The linear momentum of an isolated system must be conserved in all collisions.

® The relativistic value calculated for the linear momentum p of a particle must
approach the classical value mu as w approaches zero.

For any particle, the correct relativistic equation for linear momentum that satisfies
these conditions is

(39.19)

where u is the velocity of the particle and m is the mass of the particle. When u is much
less than ¢, vy = (1 — u?/¢2)~1/2 approaches unity and p approaches mu. Therefore,
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39.6 Watch Out for
“Relativistic Mass”

Some older treatments of rela-
tivity maintained the conserva-
tion of momentum principle at
high speeds by using a model in
which the mass of a particle
increases with speed. You might
still encounter this notion of
“relativistic ~ mass” in  your
outside reading, especially in
older books. Be aware that this
notion is no longer widely ac-
cepted and mass is considered
as invariant, independent of
speed. The mass of an object in
all frames is considered to be
the mass as measured by an
observer at rest with respect to
the object.

Definition of relativistic linear
momentum
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the relativistic equation for p does indeed reduce to the classical expression when u is
much smaller than c.

' SPEED The relativistic force F acting on a particle whose linear momentum is p is
LIMIT defined as
s
d
3x10°m/s F=—F (39.20)

where p is given by Equation 39.19. This expression, which is the relativistic form of
Newton’s second law, is reasonable because it preserves classical mechanics in the limit
of low velocities and is consistent with conservation of linear momentum for an iso-
lated system (F = 0) both relativistically and classically.
It is left as an end-of-chapter problem (Problem 69) to show that under relativistic
conditions, the acceleration a of a particle decreases under the action of a constant
The speed of light is the speed limit force, in which case a « (1 — u?/¢?)%2. From this proportionality, we see that as the
of the Universe. It is the maximum particle’s speed approaches ¢, the acceleration caused by any finite force approaches
possible speed for energy transfer zero. Hence, it is impossible to accelerate a particle from rest to a speed u = ¢. This
and for information transfer. Any . . .
argument shows that the speed of light is the ultimate speed, as noted at the end of the

object with mass must move at a - ;
lower speed. preceding section.

Example 39.10 Linear Momentum of an Electron

An electron, which has a mass of 9.11 X 1073! kg, moves
with a speed of 0.750¢. Find its relativistic momentum and
compare this value with the momentum calculated from the
classical expression.

p= 810X 1072 kg -m/s

The classical expression (used incorrectly here) gives

assical = Mot = 2.05 X 10722 kg-m/s
Solution Using Equation 39.19 with u = 0.750¢, we have Pelassical = e 8
Hence, the correct relativistic result is 50% greater than the
mu

b= classical result!
2

(911 x 103! kg) (0.750) (3.00 X 108 m/s)

\/ (0.750¢)2
1-——
c

39.8 Relativistic Energy

We have seen that the definition of linear momentum requires generalization to make
it compatible with Einstein’s postulates. This implies that most likely the definition of
kinetic energy must also be modified.

To derive the relativistic form of the work—kinetic energy theorem, let us imagine a
particle moving in one dimension along the x axis. A force in the x direction causes the
momentum of the particle to change according to Equation 39.20. The work done by
the force FFon the particle is

X9 X0 g
W= f Fdx = f AN (39.21)
X1 X1 dt

In order to perform this integration and find the work done on the particle and the
relativistic kinetic energy as a function of w, we first evaluate dp/ dt:

dp d mu _ m(du/dt)

Ta dt 2 u? \3/2
1——2 1__2
c 4
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Substituting this expression for dp/dt and dx = u dt into Equation 39.21 gives

W f m(du/dywdt _ mf" u "
°

< )%/2 ) )3/2
1-—
c2

where we use the limits 0 and « in the integral because the integration variable has
been changed from ¢ to u. We assume that the particle is accelerated from rest to some
final speed u. Evaluating the integral, we find that

W= ——— — mc? (89.22)

Recall from Chapter 7 that the work done by a force acting on a system consisting of a
single particle equals the change in kinetic energy of the particle. Because we assumed
that the initial speed of the particle is zero, we know that its initial kinetic energy is
zero. We therefore conclude that the work Win Equation 39.22 is equivalent to the
relativistic kinetic energy K:

K=——=— — mc® = yme® — mc® = (y — 1) mc> (39.23)

This equation is routinely confirmed by experiments using high-energy particle
accelerators.

At low speeds, where wu/c¢<< 1, Equation 39.23 should reduce to the classical
expression K = lmu2 We can check this by using the binomial expansion (1 — g%)~1/2 =
1+ 2,32 . for B << 1, where the higher-order powers of 3 are neglected in the
expansion. (In treatments of relativity, 8 is a common symbol used to represent u/ ¢ or
v/¢.) In our case, B = u/¢, so that

1 < u2>_1/2 u?
——_— =1 - — ~1+1=
Y 2 2 2

N =

c

c2

Substituting this into Equation 39.23 gives
1 u2 < 1 <
K= 14—5—2 -1 mcz=§mu2 (for u/c <1)
c

which is the classical expression for kinetic energy. A graph comparing the relativistic
and nonrelativistic expressions is given in Figure 39.18. In the relativistic case, the
particle speed never exceeds ¢, regardless of the kinetic energy. The two curves are in
good agreement when u << ¢.

9 Relativistic

K/me case ‘ ‘

2.0 \ Nonrelativistic

1.5 \ , / o
ol
/

0.5 / Figure 39.18 A graph comparing relativistic and
nonrelativistic kinetic energy of a moving particle.
u The energies are plotted as a function of particle
05¢ 1.0¢c 15¢ 2.0¢ speed w. In the relativistic case, u is always less than c.
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Rest energy

Total energy of a relativistic
particle

Energy-momentum relationship
for a relativistic particle

The constant term mc? in Equation 39.23, which is independent of the speed of the
particle, is called the rest energy Epr of the particle:

Eg = mc? (39.24)

The term 7m02, which does depend on the particle speed, is therefore the sum of
the kinetic and rest energies. We define yme? to be the total energy k:

Total energy = kinetic energy + rest energy

E= K+ mc? (89.25)

or

E=——— = ymc? (39.26)

The relationship E= K + mc2 shows that mass is a form of energy, where ¢ in
the rest energy term is just a constant conversion factor. This expression also shows
that a small mass corresponds to an enormous amount of energy, a concept fundamen-
tal to nuclear and elementary-particle physics.

In many situations, the linear momentum or energy of a particle is measured
rather than its speed. It is therefore useful to have an expression relating the total
energy E to the relativistic linear momentum p. This is accomplished by using the
expressions E = ymc? and p = ymu. By squaring these equations and subtracting, we
can eliminate u (Problem 43). The result, after some algebra, is®
E? = p%c? + (mc?)? (39.27)

When the particle is at rest, p = 0 and so E = Ep = mc?.

In Section 35.1, we introduced the concept of a particle of light, called a photon.
For particles that have zero mass, such as photons, we set m = 0 in Equation 39.27 and
find that

E= pe (39.28)

This equation is an exact expression relating total energy and linear momentum for
photons, which always travel at the speed of light (in vacuum).

Finally, note that because the mass m of a particle is independent of its motion, m
must have the same value in all reference frames. For this reason, m is often called the
invariant mass. On the other hand, because the total energy and linear momentum
of a particle both depend on velocity, these quantities depend on the reference frame
in which they are measured.

When we are dealing with subatomic particles, it is convenient to express their
energy in electron volts (Section 25.1) because the particles are usually given this
energy by acceleration through a potential difference. The conversion factor, as you
recall from Equation 25.5, is

1eV=160x10"1]

For example, the mass of an electron is 9.11 X 10731 kg. Hence, the rest energy of the
electron is
me? = (9.11 X 10731 kg) (3.00 X 108 m/s)? = 8.20 X 107 14]
= (8.20 X 107 J)(1 eV/1.60 X 10719]) = 0.511 MeV

6 One way to remember this relationship is to draw a right triangle having a hypotenuse of length £

and legs of lengths pcand me?.
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QUiCk QUiZ 39.10 The following pairs of energies represent the rest
energy and total energy of three different particles: particle 1: E, 2F; particle 2: E, 3E;

particle 3: 2, 4E. Rank the particles, from greatest to least, according to their (a) mass;

(b) kinetic energy; (c) speed.

Example 39.11 The Energy of a Speedy Electron

An electron in a television picture tube typically moves with
a speed u = 0.250¢. Find its total energy and kinetic energy
in electron volts.

Solution Using the fact that the rest energy of the electron
is 0.511 MeV together with Equation 39.26, we have

me? 0.511 MeV

2 2
\/1 I \/1 _ (0.25205)
c c

= 1.03(0.511 MeV) =

E=

0.528 MeV

Example 39.12 The Energy of a Speedy Proton

(A) Find the rest energy of a proton in electron volts.

Solution Using Equation 39.24,

Ep = myc® = (1.67 X 10727 kg) (3.00 X 108 m/s)?
1.00 eV >

= (150 X 10710 (—
¢ D\ 160 x 107195

938 MeV

(B) If the total energy of a proton is three times its rest
energy, what is the speed of the proton?

Solution Equation 39.26 gives

2
E=3m[,62= e
u2
177
62
1
3= S
u
1--3

Solving for u gives

2 1
-4
¢ 9
w8
c? 9
\8 g
u—?c=0.9435= 2.83 X 10°m/s

(C) Determine the kinetic energy of the proton in electron
volts.

This is 3% greater than the rest energy.
We obtain the kinetic energy by subtracting the rest
energy from the total energy:

K= E— m,® = 0528 MeV — 0.511 MeV

= 0.017 MeV

Solution From Equation 39.25,
K=FE— m},,c2 = 3m[]62 — m[,CQ = Qm[]c2
Because m;,cQ = 938 MeV, we see that K= 1880 MeV.

(D) What is the proton’s momentum?

Solution We can use Equation 39.27 to calculate the
momentum with £ = 3mj,c2:

E2 = p%c® + (myc?)? = (3myc?)?
p2e? = 9(mych)? = (myc?)? = 8(myc?)?

2
p=8 I _ g 9BMeV) o650 Mev/c
4 4

The unit of momentum is written MeV/¢, which is a
common unit in particle physics.

What If? In classical physics, if the momentum of a particle
doubles, the kinetic energy increases by a factor of 4. What
happens to the kinetic energy of the speedy proton in this
example if its momentum doubles?

Answer Based on what we have seen so far in relativity, it is
likely that you would predict that its kinetic energy does not
increase by a factor of 4. If the momentum doubles, the new
momentum is

m)c2 m
poow =2 (8 1) = a2 2

4

c2

Using Equation 39.27, we find the square of the new total
energy:

EIQICW = p?lewCQ + (m[;CQ)Q
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. mc2 \2 . . . Notice that this is only 2.35 times as large as the kinetic en-
Efew = (4\/5 L) ¢+ (mpCZ)Q = 33(’”1752)2 ergy we found in part (C), not four times as large. In gen-
‘ eral, the factor by which the kinetic energy increases if the

Epew = \/%(mpcg) = 5~7mp52 momentum doubles will depend on the initial momentum,

but will approach 4 as the momentum approaches zero. In
this latter situation, classical physics correctly describes the
Kiew = Enew — m/,c2 = 5.7mﬁc2 — m{,cg = 4.7m[,62 situation.

Now, using Equation 39.25, we find the new kinetic energy:

39.9 Mass and Energy

Equation 39.26, E = ymc?, which represents the total energy of a particle, suggests that
even when a particle is at rest (y = 1) it still possesses enormous energy through its
mass. The clearest experimental proof of the equivalence of mass and energy occurs in
nuclear and elementary particle interactions in which the conversion of mass into
kinetic energy takes place. Because of this, in relativistic situations, we cannot use the
principle of conservation of energy as it was outlined in Chapters 7 and 8. We must
include rest energy as another form of energy storage.

This concept is important in atomic and nuclear processes, in which the change in
mass is a relatively large fraction of the initial mass. For example, in a conventional nu-
clear reactor, the uranium nucleus undergoes fission, a reaction that results in several
lighter fragments having considerable kinetic energy. In the case of 235U, which is used
as fuel in nuclear power plants, the fragments are two lighter nuclei and a few
neutrons. The total mass of the fragments is less than that of the 23U by an amount
Am. The corresponding energy Amc? associated with this mass difference is exactly
equal to the total kinetic energy of the fragments. The kinetic energy is absorbed
as the fragments move through water, raising the internal energy of the water. This
internal energy is used to produce steam for the generation of electrical power.

Next, consider a basic fusion reaction in which two deuterium atoms combine to
form one helium atom. The decrease in mass that results from the creation of one
helium atom from two deuterium atoms is Am = 4.25 X 1072 kg. Hence, the corre-
sponding energy that results from one fusion reaction is Ame? = 3.83 X 10712] =
23.9 MeV. To appreciate the magnitude of this result, if only 1 g of deuterium is
converted to helium, the energy released is on the order of 10'2J! At the year 2003
cost of electrical energy, this would be worth about $30 000. We shall present more
details of these nuclear processes in Chapter 45 of the extended version of this
textbook.

Example 39.13 Mass Change in a Radioactive Decay

The ?'°Po nucleus is unstable and exhibits radioactivity Thus, the mass change is
(Chapter 44). It decays to 2!2Pb by emitting an alpha parti-

cle, which is a helium nucleus, *He. Find Am = 216.001905 u — 215.994491 u = 0.007 414 u

(A) the mass change in this decay and = 123 x 10729 kg

(B) the energy that this represents. (B) The energy associated with this mass change is
Solution Using values in Table A.3, we see that the initial E=Amc? = (1.23 X 1072 kg) (3.00 X 10% m/s)?
and final masses are

=111 X10712] = 6.92MeV

m; = m(?1%Po) = 216.001 905 u
my= m(?12Pb) + m(*He) = 211.991 888 u + 4.002 603 u This energy appears as the kinetic energy of the alpha
= 915.994 491 u particle and the 2!2Pb nucleus after the decay.
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39.10 The General Theory of Relativity

Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly differ-
ent properties: a gravitational attraction for other masses and an inertial property that
represents a resistance to acceleration. To designate these two attributes, we use the
subscripts gand 7 and write

Gravitational property Fg = meg
Inertial property MF=ma

The value for the gravitational constant G was chosen to make the magnitudes of My
and m; numerically equal. Regardless of how G is chosen, however, the strict propor-
tionality of m, and m; has been established experimentally to an extremely high degree:
a few parts in 1012, Thus, it appears that gravitational mass and inertial mass may
indeed be exactly proportional.

But why? They seem to involve two entirely different concepts: a force of mutual
gravitational attraction between two masses, and the resistance of a single mass to
being accelerated. This question, which puzzled Newton and many other physicists
over the years, was answered by Einstein in 1916 when he published his theory of gravi-
tation, known as the general theory of relativity. Because it is a mathematically complex
theory, we offer merely a hint of its elegance and insight.

In Einstein’s view, the dual behavior of mass was evidence for a very intimate and
basic connection between the two behaviors. He pointed out that no mechanical
experiment (such as dropping an object) could distinguish between the two situations
illustrated in Figures 39.19a and 39.19b. In Figure 39.19a, a person is standing in an
elevator on the surface of a planet, and feels pressed into the floor, due to the gravita-
tional force. In Figure 39.19b, the person is in an elevator in empty space accelerating
upward with @ = g The person feels pressed into the floor with the same force as in
Figure 39.19a. In each case, an object released by the observer undergoes a downward
acceleration of magnitude g relative to the floor. In Figure 39.19a, the person is in an
inertial frame in a gravitational field. In Figure 39.19b, the person is in a noninertial
frame accelerating in gravity-free space. Einstein’s claim is that these two situations are
completely equivalent.

(@) (b) (©)

Figure 39.19 (a) The observer is at rest in a uniform gravitational field g, directed
downward. (b) The observer is in a region where gravity is negligible, but the frame
is accelerated by an external force F that produces an acceleration g directed
upward. According to Einstein, the frames of reference in parts (a) and (b) are
equivalent in every way. No local experiment can distinguish any difference between
the two frames. (c) In the accelerating frame, a ray of light would appear to bend
downward due to the acceleration of the elevator. (d) If parts (a) and (b) are truly
equivalent, as Einstein proposed, then part (c) suggests that a ray of light would
bend downward in a gravitational field.
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Postulates of the general theory
of relativity

Einstein’s cross. The four bright
spots are images of the same galaxy
that have been bent around a

massive object located between the
galaxy and the Earth. The massive
object acts like a lens, causing the
rays of light that were diverging
from the distant galaxy to converge
on the Earth. (If the intervening
massive object had a uniform mass
distribution, we would see a bright
ring instead of four spots.)

Einstein carried this idea further and proposed that no experiment, mechanical or
otherwise, could distinguish between the two cases. This extension to include all
phenomena (not just mechanical ones) has interesting consequences. For example,
suppose that a light pulse is sent horizontally across an elevator that is accelerating
upward in empty space, as in Figure 39.19c. From the point of view of an observer in
an inertial frame outside of the elevator, the light travels in a straight line while the
floor of the elevator accelerates upward. According to the observer on the elevator,
however, the trajectory of the light pulse bends downward as the floor of the elevator
(and the observer) accelerates upward. Therefore, based on the equality of parts
(a) and (b) of the figure for all phenomena, Einstein proposed that a beam of light
should also be bent downward by a gravitational field, as in Figure 39.19d. Experi-
ments have verified the effect, although the bending is small. A laser aimed at the
horizon falls less than 1 cm after traveling 6 000 km. (No such bending is predicted in
Newton’s theory of gravitation.)

The two postulates of Einstein’s general theory of relativity are

¢ All the laws of nature have the same form for observers in any frame of reference,
whether accelerated or not.

e In the vicinity of any point, a gravitational field is equivalent to an accelerated
frame of reference in the absence of gravitational effects. (This is the principle of
equivalence.)

One interesting effect predicted by the general theory is that time is altered by
gravity. A clock in the presence of gravity runs slower than one located where gravity
is negligible. Consequently, the frequencies of radiation emitted by atoms in the
presence of a strong gravitational field are red-shified to lower frequencies when
compared with the same emissions in the presence of a weak field. This gravitational
red shift has been detected in spectral lines emitted by atoms in massive stars. It has
also been verified on the Earth by comparing the frequencies of gamma rays emitted
from nuclei separated vertically by about 20 m.

The second postulate suggests that a gravitational field may be “transformed away”
at any point if we choose an appropriate accelerated frame of reference—a freely
falling one. Einstein developed an ingenious method of describing the acceleration
necessary to make the gravitational field “disappear.” He specified a concept, the
curvature of space—time, that describes the gravitational effect at every point. In fact, the
curvature of space—time completely replaces Newton’s gravitational theory. According
to Einstein, there is no such thing as a gravitational force. Rather, the presence of a
mass causes a curvature of space-time in the vicinity of the mass, and this curvature
dictates the space-time path that all freely moving objects must follow. In 1979, John
Wheeler summarized Einstein’s general theory of relativity in a single sentence: “Space
tells matter how to move and matter tells space how to curve.”

As an example of the effects of curved space—time, imagine two travelers moving on
parallel paths a few meters apart on the surface of the Earth and maintaining an exact
northward heading along two longitude lines. As they observe each other near the
equator, they will claim that their paths are exactly parallel. As they approach the
North Pole, however, they notice that they are moving closer together, and they will
actually meet at the North Pole. Thus, they will claim that they moved along parallel
paths, but moved toward each other, as if there were an altractive force between them. They
will make this conclusion based on their everyday experience of moving on flat
surfaces. From our mental representation, however, we realize that they are walking on
a curved surface, and it is the geometry of the curved surface that causes them to
converge, rather than an attractive force. In a similar way, general relativity replaces
the notion of forces with the movement of objects through curved space-time.

One prediction of the general theory of relativity is that a light ray passing near the
Sun should be deflected in the curved space-time created by the Sun’s mass. This
prediction was confirmed when astronomers detected the bending of starlight near the
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Figure 39.20 Deflection of starlight passing near the Sun. Because of this effect, the
Sun or some other remote object can act as a gravitational lens. In his general theory of
relativity, Einstein calculated that starlight just grazing the Sun’s surface should be
deflected by an angle of 1.75 s of arc.

Sun during a total solar eclipse that occurred shortly after World War I (Fig. 39.20).
When this discovery was announced, Einstein became an international celebrity.

If the concentration of mass becomes very great, as is believed to occur when a
large star exhausts its nuclear fuel and collapses to a very small volume, a black hole
may form. Here, the curvature of space—time is so extreme that, within a certain
distance from the center of the black hole, all matter and light become trapped, as
discussed in Section 13.7.

SUMMARY

The two basic postulates of the special theory of relativity are

® The laws of physics must be the same in all inertial reference frames.

® The speed of light in vacuum has the same value, ¢ = 3.00 X 108 m/s, in all inertial
frames, regardless of the velocity of the observer or the velocity of the source emit-
ting the light.

Three consequences of the special theory of relativity are

e Events that are measured to be simultaneous for one observer are not necessarily
measured to be simultaneous for another observer who is in motion relative to
the first.

® Clocks in motion relative to an observer are measured to run slower by a factor
y= (1 — v%/¢* /2. This phenomenon is known as time dilation.

¢ The length of objects in motion are measured to be contracted in the direction of
motion by a factor 1/y = (1 — v%/¢%)/2. This phenomenon is known as length
contraction.

To satisfy the postulates of special relativity, the Galilean transformation equations
must be replaced by the Lorentz transformation equations:

x' = y(x— vt) y =y 2=z t’=y<t—%x> (39.11)
c
where v = (1 — v2/¢%) 1”2 and the S’ frame moves in the x direction relative to the S
frame.

The relativistic form of the velocity transformation equation is

W, = ——— (39.16)

where u, is the speed of an object as measured in the S frame and u) is its speed
measured in the S’ frame.
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The relativistic expression for the linear momentum of a particle moving with a
velocity u is

p=—F— = ymu (89.19)

K= ——— — mc?2 = (y — 1) me? (39.23)

The constant term mc? in Equation 39.23 is called the rest energy Er of the particle:
Eg = mc? (39.24)

The total energy E of a particle is given by

E = ——— = ymc? (39.26)

The relativistic linear momentum of a particle is related to its total energy through
the equation

E? = p2c% + (me?)? (39.27)
1. What two speed measurements do two observers in relative 9. How is acceleration indicated on a space—time graph?

motion always agree on? 10. A particle is moving at a speed less than ¢/2. If the speed

2. A spacecraft with the shape of a sphere moves past an of the particle is doubled, what happens to its momentum?

observer on Earth with a speed 0.5¢. What shape does the  [11.]Give a physical argument that shows that it is impossible to

observer measure for the spacecraft as it moves past? accelerate an object of mass m to the speed of light, even
3. The speed of light in water is 230 Mm/s. Suppose an with a continuous force acting on it.

electron is moving through water at 250 Mm/s. Does this 12

. The upper limit of the speed of an electron is the speed of
violate the principle of relativity?

light ¢. Does that mean that the momentum of the
4. Two identical clocks are synchronized. One is then put in electron has an upper limit?
orbit directed eastward around the Earth while the other 13
remains on the Earth. Which clock runs slower? When the
moving clock returns to the Earth, are the two still
synchronized?

. Because mass is a measure of energy, can we conclude that
the mass of a compressed spring is greater than the mass
of the same spring when it is not compressed?

14. It is said that Einstein, in his teenage years, asked the ques-
tion, “What would I see in a mirror if I carried it in my
hands and ran at the speed of light?” How would you
answer this question?

Explain why it is necessary, when defining the length of a
rod, to specify that the positions of the ends of the rod are
to be measured simultaneously.

6. A train is approaching you at very high speed as you stand 15
next to the tracks. Just as an observer on the train passes
you, you both begin to play the same Beethoven symphony
on portable compact disc players. (a) According to you,
whose CD player finishes the symphony first? (b) What If?
According to the observer on the train, whose CD player

finishes the symphony first? (c) Whose CD player really
finishes the symphony first? 17. “Newtonian mechanics correctly describes objects moving

at ordinary speeds and relativistic mechanics correctly
describes objects moving very fast.” “Relativistic mechanics
must make a smooth transition as it reduces to Newtonian
mechanics in a case where the speed of an object becomes
small compared to the speed of light.” Argue for or against
each of these two statements.
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. Some distant astronomical objects, called quasars, are
receding from us at half the speed of light (or greater).
What is the speed of the light we receive from these
quasars?

16. Photons of light have zero mass. How is it possible that
they have momentum?

List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

8. Does saying that a moving clock runs slower than a station-
ary one imply that something is physically unusual about
the moving clock?



18.

19.

20.

21.

Problems 1277

(b)

Figure Q39.18

Two cards have straight edges. Suppose that the top edge
of one card crosses the bottom edge of another card at a
small angle, as in Figure Q39.18a. A person slides the cards
together at a moderately high speed. In what direction
does the intersection point of the edges move? Show that
it can move at a speed greater than the speed of light.

A small flashlight is suspended in a horizontal plane
and set into rapid rotation. Show that the spot of light it
produces on a distant screen can move across the screen at
a speed greater than the speed of light. (If you use a laser
pointer, as in Figure Q39.18b, make sure the direct laser
light cannot enter a person’s eyes.) Argue that these exper-
iments do not invalidate the principle that no material, no
energy, and no information can move faster than light
moves in a vacuum.

Describe how the results of Example 39.7 would change if,
instead of fast space vehicles, two ordinary cars were
approaching each other at highway speeds.

Two objects are identical except that one is hotter than the
other. Compare how they respond to identical forces.

With regard to reference frames, how does general relativ-
ity differ from special relativity?

22.

23.

Two identical clocks are in the same house, one upstairs in
a bedroom, and the other downstairs in the Kkitchen.
Which clock runs more slowly? Explain.

A thought experiment. Imagine ants living on a merry-
go-round turning at relativistic speed, which is their two-
dimensional world. From measurements on small circles
they are thoroughly familiar with the number 7. When
they measure the circumference of their world, and
divide it by the diameter, they expect to calculate the
number 7 = 3.14159. . . . We see the merry-go-round
turning at relativistic speed. From our point of view, the
ants’ measuring rods on the circumference are experi-
encing length contraction in the tangential direction;
hence the ants will need some extra rods to fill that
entire distance. The rods measuring the diameter,
however, do not contract, because their motion is
perpendicular to their lengths. As a result, the computed
ratio does not agree with the number 7. If you were an
ant, you would say that the rest of the universe is
spinning in circles, and your disk is stationary. What
possible explanation can you then give for the discrep-
ancy, in light of the general theory of relativity?

PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging |:| = full solution available in the Student Solutions Manual and Study Guide

Zﬁ = coached solution with hints available at http://www.pse6.com E = computer useful in solving problem

= paired numerical and symbolic problems

Section 39.1
1.

2.

The Principle of Galilean Relativity

A 2000-kg car moving at 20.0 m/s collides and locks
together with a 1 500-kg car at rest at a stop sign. Show that
momentum is conserved in a reference frame moving at
10.0 m/s in the direction of the moving car.

A ball is thrown at 20.0 m/s inside a boxcar moving along
the tracks at 40.0 m/s. What is the speed of the ball
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relative to the ground if the ball is thrown (a) forward
(b) backward (c) out the side door?

In a laboratory frame of reference, an observer notes

that Newton’s second law is valid. Show that it is also
valid for an observer moving at a constant speed, small
compared with the speed of light, relative to the labora-
tory frame.
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. Show that Newton’s second law is not valid in a reference
frame moving past the laboratory frame of Problem 3 with
a constant acceleration.

Section 39.2 The Michelson-Morley Experiment
Section 39.3 Einstein’s Principle of Relativity
Section 39.4 Consequences of the Special

Theory of Relativity

Problem 43 in Chapter 4 can be assigned with this section.

5

6.

. How fast must a meter stick be moving if its length is
measured to shrink to 0.500 m?

At what speed does a clock move if it is measured to run at
a rate that is half the rate of a clock at rest with respect to
an observer?

. An astronaut is traveling in a space vehicle that has a speed
of 0.500¢ relative to the Earth. The astronaut measures her
pulse rate at 75.0 beats per minute. Signals generated by
the astronaut’s pulse are radioed to Earth when the vehicle
is moving in a direction perpendicular to the line that
connects the vehicle with an observer on the Earth.
(a) What pulse rate does the Earth observer measure?
(b) What If? What would be the pulse rate if the speed of
the space vehicle were increased to 0.990¢?

. An astronomer on Earth observes a meteoroid in the
southern sky approaching the Earth at a speed of 0.800c.
At the time of its discovery the meteoroid is 20.0 ly from
the Earth. Calculate (a) the time interval required for the
meteoroid to reach the Earth as measured by the Earth-
bound astronomer, (b) this time interval as measured by a
tourist on the meteoroid, and (c) the distance to the Earth
as measured by the tourist.

An atomic clock moves at 1 000 km/h for 1.00 h as mea-

10.

sured by an identical clock on the Earth. How many
nanoseconds slow will the moving clock be compared with
the Earth clock, at the end of the 1.00-h interval?

A muon formed high in the Earth’s atmosphere travels at
speed v = 0.990¢ for a distance of 4.60 km before it
decays into an electron, a neutrino, and an antineutrino
(u~ —e” + v+ 7). (a) How long does the muon live, as
measured in its reference frame? (b) How far does the
Earth travel, as measured in the frame of the muon?

Zﬁ A spacecraft with a proper length of 300 m takes

12.

0.750 us to pass an Earth observer. Determine the speed of
the spacecraft as measured by the Earth observer.

(a) An object of proper length L, takes a time interval A¢
to pass an Earth observer. Determine the speed of the
object as measured by the Earth observer. (b) A column
of tanks, 300 m long, takes 75.0 s to pass a child waiting
at a street corner on her way to school. Determine the
speed of the armored vehicles. (c) Show that the answer
to part (a) includes the answer to Problem 11 as a special
case, and includes the answer to part (b) as another
special case.

13.

14.

15.

16.

17.

18.

19.

Review problem. In 1963 Mercury astronaut Gordon Cooper
orbited the Earth 22 times. The press stated that for each
orbit he aged 2 millionths of a second less than he would
have if he had remained on the Earth. (a) Assuming that he
was 160 km above the Earth in a circular orbit, determine
the time difference between someone on the Earth and the
orbiting astronaut for the 22 orbits. You will need to use
the approximation V1 — x =~ 1 — x/2, for small x. (b) Did
the press report accurate information? Explain.

For what value of v does y = 1.0100? Observe that for
speeds lower than this value, time dilation and length con-
traction are effects amounting to less than 1%.

A friend passes by you in a spacecraft traveling at a high
speed. He tells you that his craft is 20.0 m long and that
the identically constructed craft you are sitting in is 19.0 m
long. According to your observations, (a) how long is your
spacecraft, (b) how long is your friend’s craft, and (c) what
is the speed of your friend’s craft?

The identical twins Speedo and Goslo join a migration
from the Earth to Planet X. It is 20.0 ly away in a reference
frame in which both planets are at rest. The twins, of the
same age, depart at the same time on different spacecraft.
Speedo’s craft travels steadily at 0.950¢, and Goslo’s at
0.750¢. Calculate the age difference between the twins
after Goslo’s spacecraft lands on Planet X. Which twin is
the older?

An interstellar space probe is launched from the Earth.
After a brief period of acceleration it moves with a
constant velocity, with a magnitude of 70.0% of the speed
of light. Its nuclear-powered batteries supply the energy to
keep its data transmitter active continuously. The batteries
have a lifetime of 15.0 yr as measured in a rest frame.
(a) How long do the batteries on the space probe last as
measured by Mission Control on the Earth? (b) How far is
the probe from the Earth when its batteries fail, as mea-
sured by Mission Control? (c) How far is the probe from
the Earth when its batteries fail, as measured by its built-in
trip odometer? (d) For what total time interval after
launch are data received from the probe by Mission
Control? Note that radio waves travel at the speed of light
and fill the space between the probe and the Earth at the
time of battery failure.

Review problem. An alien civilization occupies a brown
dwarf, nearly stationary relative to the Sun, several
lightyears away. The extraterrestrials have come to love
original broadcasts of I Love Lucy, on our television
channel 2, at carrier frequency 57.0 MHz. Their line of
sight to us is in the plane of the Earth’s orbit. Find the
difference between the highest and lowest frequencies
they receive due to the Earth’s orbital motion around
the Sun.

Police radar detects the speed of a car (Fig. P39.19) as
follows. Microwaves of a precisely known frequency are
broadcast toward the car. The moving car reflects the
microwaves with a Doppler shift. The reflected waves are
received and combined with an attenuated version of the
transmitted wave. Beats occur between the two microwave
signals. The beat frequency is measured. (a) For an
electromagnetic wave reflected back to its source from a
mirror approaching at speed v, show that the reflected
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wave has frequency
c+t v

f:fsource c— v
where fsource is the source frequency. (b) When v is much
less than ¢, the beat frequency is much smaller than the
transmitted frequency. In this case use the approximation
S+ fsource = 2 fsource and show that the beat frequency can
be written as fpea = 2v/A. (c) What beat frequency is mea-
sured for a car speed of 30.0 m/s if the microwaves have
frequency 10.0 GHz? (d) If the beat frequency measure-
ment is accurate to =5 Hz, how accurate is the velocity
measurement?

Trent Steffler/David R. Frazier Photo Library

Figure P39.19

20. The red shift. A light source recedes from an observer with a

21.

speed Usouree that is small compared with ¢. (a) Show that
the fractional shift in the measured wavelength is given by
the approximate expression

AA ~ v source

A ¢

This phenomenon is known as the red shift, because the
visible light is shifted toward the red. (b) Spectroscopic
measurements of light at A = 397 nm coming from a
galaxy in Ursa Major reveal a red shift of 20.0 nm. What is
the recessional speed of the galaxy?

A physicist drives through a stop light. When he is pulled
over, he tells the police officer that the Doppler shift made
the red light of wavelength 650 nm appear green to him,
with a wavelength of 520 nm. The police officer writes out
a traffic citation for speeding. How fast was the physicist
traveling, according to his own testimony?

Section 39.5 The Lorentz Transformation

Equations

22. Suzanne observes two light pulses to be emitted from the

same location, but separated in time by 3.00 us. Mark sees

23.

24.

25.

Problems 1279

the emission of the same two pulses separated in time by
9.00 ws. (a) How fast is Mark moving relative to Suzanne?
(b) According to Mark, what is the separation in space of
the two pulses?

A moving rod is observed to have a length of 2.00 m and to
be oriented at an angle of 30.0° with respect to the direc-
tion of motion, as shown in Figure P39.23. The rod has a
speed of 0.995¢. (a) What is the proper length of the rod?
(b) What is the orientation angle in the proper frame?

e
2.00 m
=

<~

I||> Direction of motion

Figure P39.23

An observer in reference frame S sees two events as simul-
taneous. Event A occurs at the point (50.0 m, 0, 0) at the
instant 9:00:00 Universal time, 15 January 2004. Event B
occurs at the point (150 m, 0, 0) at the same moment. ‘5
second observer, moving past with a velocity of 0.800ci,
also observes the two events. In her reference frame S’,
which event occurred first and what time interval elapsed
between the events?

A red light flashes at position xg = 3.00 m and time (g =
1.00 X 1075, and a blue light flashes at xg = 5.00 m and
tp = 9.00 X 10795, all measured in the S reference frame.
Reference frame S’ has its origin at the same point as S at
t =1t = 0; frame S’ moves uniformly to the right. Both
flashes are observed to occur at the same place in S'.
(a) Find the relative speed between S and S'. (b) Find the
location of the two flashes in frame S’. (¢) At what time
does the red flash occur in the S’ frame?

Section 39.6 The Lorentz Velocity Transformation

26.

Equations

A Klingon spacecraft moves away from the Earth at a speed
of 0.800¢ (Fig. P39.26). The starship Enferprise pursues at a
speed of 0.900¢ relative to the Earth. Observers on the Earth
see the Enterprise overtaking the Klingon craft at a relative
speed of 0.100¢. With what speed is the Enterprise overtaking
the Klingon craft as seen by the crew of the Enterprise?

S/
v=0.800¢
u=0.900¢
b
_ . (S . ¥
Figure P39.26

Zﬁ Two jets of material from the center of a radio galaxy

are ejected in opposite directions. Both jets move at 0.750¢
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relative to the galaxy. Determine the speed of one jet
relative to the other.

28. A spacecraft is launched from the surface of the Earth with a
velocity of 0.600¢ at an angle of 50.0° above the horizontal
positive x axis. Another spacecraft is moving past, with a
velocity of 0.700¢ in the negative x direction. Determine the
magnitude and direction of the velocity of the first spacecraft
as measured by the pilot of the second spacecraft.

Section 39.7 Relativistic Linear Momentum
and the Relativistic Form
of Newton’s Laws

29. Calculate the momentum of an electron moving with a
speed of (a) 0.010 O¢, (b) 0.500¢, and (c) 0.900c¢.

30. The nonrelativistic expression for the momentum of a
particle, p = mu, agrees with experiment if u << ¢. For
what speed does the use of this equation give an error in
the momentum of (a) 1.00% and (b) 10.0%?

31. A golf ball travels with a speed of 90.0 m/s. By what fraction
does its relativistic momentum magnitude p differ from its
classical value mu? That is, find the ratio (p — mu)/mu.

32. Show that the speed of an object having momentum of
magnitude p and mass m is

C
N1+ (me/p)?

Zﬁ An unstable particle at rest breaks into two fragments
of unequal mass. The mass of the first fragment is
2.50 X 1072 kg, and that of the other is 1.67 X 10727 kg.
If the lighter fragment has a speed of 0.893¢ after the
breakup, what is the speed of the heavier fragment?

Section 39.8 Relativistic Energy

34. Determine the energy required to accelerate an electron
from (a) 0.500¢ to 0.900¢ and (b) 0.900¢ to 0.990c.

A proton in a high-energy accelerator moves with a speed
of ¢/2. Use the work—kinetic energy theorem to find the
work required to increase its speed to (a) 0.750¢ and
(b) 0.995c.

36. Show that, for any object moving at less than one-tenth the
speed of light, the relativistic kinetic energy agrees with
the result of the classical equation K = %mu2 to within less
than 1%. Thus for most purposes, the classical equation is
good enough to describe these objects, whose motion we
call nonrelativistic.

Find the momentum of a proton in MeV/ ¢ units assuming
its total energy is twice its rest energy.

38. Find the kinetic energy of a 78.0-kg spacecraft launched
out of the solar system with speed 106 km/s by using
(a) the classical equation K = %muQ. (b) What If?
Calculate its kinetic energy using the relativistic equation.

Zd A proton moves at 0.950¢. Calculate its (a) rest
energy, (b) total energy, and (c) kinetic energy.

40. A cube of steel has a volume of 1.00 cm® and a mass of
8.00 g when at rest on the Earth. If this cube is now given a
speed u = 0.900¢, what is its density as measured by a

stationary observer? Note that relativistic density is defined
as Egr/ 2V,

41. An unstable particle with a mass of 8.34 X 10727 kg is
initially at rest. The particle decays into two fragments that
fly off along the x axis with velocity components 0.987¢ and
—0.868¢. Find the masses of the fragments. (Suggestion:
Conserve both energy and momentum.)

42. An object having mass 900 kg and traveling at speed 0.850¢
collides with a stationary object having mass 1400 kg. The
two objects stick together. Find (a) the speed and (b) the
mass of the composite object.

Show that the energy-momentum relationship E? =
p202 + (me?)? follows from the expressions E = yme?
and p = ymu.

44. In a typical color television picture tube, the electrons are
accelerated through a potential difference of 25000 V.
(a) What speed do the electrons have when they strike the
screen? (b) What is their kinetic energy in joules?

45. Consider electrons accelerated to an energy of 20.0 GeV in
the 3.00-km-long Stanford Linear Accelerator. (a) What is
the vy factor for the electrons? (b) What is their speed?
(c) How long does the accelerator appear to them?

46. Compact high-power lasers can produce a 2.00-] light
pulse of duration 100 fs, focused to a spot 1 um in diame-
ter. (See Mourou and Umstader, “Extreme Light,” Scientific
American, May 2002, page 81.) The electric field in the
light accelerates electrons in the target material to near
the speed of light. (a) What is the average power of the
laser during the pulse? (b) How many electrons can be
accelerated to 0.999 9¢ if 0.010 0% of the pulse energy is

converted into energy of electron motion?

A pion at rest (m; = 273m,) decays to a muon (m, =
207m, and an antineutrino (m3 = 0). The reaction is
written 7~ — w~ + 7. Find the kinetic energy of the muon
and the energy of the antineutrino in electron volts. (Sug-

gestion: Conserve both energy and momentum.)

48. According to observer A, two objects of equal mass and
moving along the x axis collide head on and stick to
each other. Before the collision, this observer measures
that object 1 moves to the right with a speed of 3¢/4,
while object 2 moves to the left with the same speed.
According to observer B, however, object 1 is initially at
rest. (a) Determine the speed of object 2 as seen by
observer B. (b) Compare the total initial energy of the
system in the two frames of reference.

Section 39.9 Mass and Energy

49. Make an order-of-magnitude estimate of the ratio of mass
increase to the original mass of a flag, as you run it up a
flagpole. In your solution explain what quantities you take
as data and the values you estimate or measure for them.

50. When 1.00 g of hydrogen combines with 8.00 g of oxygen,
9.00 g of water is formed. During this chemical reaction,
2.86 X 10° J of energy is released. How much mass do the
constituents of this reaction lose? Is the loss of mass likely
to be detectable?

51. In a nuclear power plant the fuel rods last 3 yr before they
are replaced. If a plant with rated thermal power 1.00 GW
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52.

operates at 80.0% capacity for 3.00 yr, what is the loss of
mass of the fuel?

Review problem. The total volume of water in the oceans
is approximately 1.40 X 10 km®. The density of sea
water is 1030 kg/m?, and the specific heat of the water is
4186 J/(kg-°C). Find the increase in mass of the oceans
produced by an increase in temperature of 10.0°C.

The power output of the Sun is 3.77 X 1026 W. How much

54.

mass is converted to energy in the Sun each second?

A gamma ray (a high-energy photon) can produce an
electron (e”) and a positron (e*) when it enters the
electric field of a heavy nucleus: y—>e® +e”. What
minimum gamma-ray energy is required to accomplish this
task? (Note: The masses of the electron and the positron
are equal.)

Section 39.10 The General Theory of Relativity

55.

An Earth satellite used in the global positioning
system moves in a circular orbit with period 11 h 58 min.
(a) Determine the radius of its orbit. (b) Determine its
speed. (c) The satellite contains an oscillator producing
the principal nonmilitary GPS signal. Its frequency is
1575.42 MHz in the reference frame of the satellite. When
it is received on the Earth’s surface, what is the fractional
change in this frequency due to time dilation, as described
by special relativity? (d) The gravitational blue shift of the
frequency according to general relativity is a separate
effect. The magnitude of that fractional change is given by

ﬂ _ AUg
f me?

where AUj is the change in gravitational potential energy
of an object-Earth system when the object of mass m is
moved between the two points at which the signal is
observed. Calculate this fractional change in frequency.
(e) What is the overall fractional change in frequency?
Superposed on both of these relativistic effects is a
Doppler shift that is generally much larger. It can be a red
shift or a blue shift, depending on the motion of a particu-
lar satellite relative to a GPS receiver (Fig. P39.55).

Photo courtesy of Garmin Ltd.

Figure P39.55 This global positioning system (GPS) receiver
incorporates relativistically corrected time calculations in its
analysis of signals it receives from orbiting satellites. This allows

the unit to determine its position on the Earth’s surface to within

a few meters. If these corrections were not made, the location
error would be about 1 km.

Problems 1281

Additional Problems

56.

An astronaut wishes to visit the Andromeda galaxy, making
a one-way trip that will take 30.0 yr in the spacecraft’s
frame of reference. Assume that the galaxy is 2.00 X 10° 1y
away and that the astronaut’s speed is constant. (a) How
fast must he travel relative to the Earth? (b) What will be
the kinetic energy of his 1000-metric-ton spacecraft?
(c) What is the cost of this energy if it is purchased at a
typical consumer price for electric energy: $0.130/kWh?

Zﬁ The cosmic rays of highest energy are protons that

58.

59.

have kinetic energy on the order of 1013 MeV. (a) How
long would it take a proton of this energy to travel across
the Milky Way galaxy, having a diameter ~ 10° ly, as mea-
sured in the proton’s frame? (b) From the point of view of
the proton, how many kilometers across is the galaxy?

An electron has a speed of 0.750¢. (a) Find the speed of a
proton that has the same kinetic energy as the electron.
(b) What If? Find the speed of a proton that has the same
momentum as the electron.

Ted and Mary are playing a game of catch in frame S,
which is moving at 0.600¢ with respect to frame S, while
Jim, at rest in frame S, watches the action (Fig. P39.59).
Ted throws the ball to Mary at 0.800¢ (according to Ted)
and their separation (measured in S') is 1.80 X 10!2 m.
(a) According to Mary, how fast is the ball moving?
(b) According to Mary, how long does it take the ball to
reach her? (c) According to Jim, how far apart are Ted
and Mary, and how fast is the ball moving? (d) According
to Jim, how long does it take the ball to reach Mary?

S’
v=10.600¢ 4 7
— A 1.80x 10" m —>~
// //
S "0.800¢ L
i ) e—0 P 7
// //
» N
- - L £ — > X’
e Mary ! Ted
//
e
7
2 X
Jim
Figure P39.59
60. A rechargeable AA battery with a mass of 25.0 g can supply

a power of 1.20 W for 50.0 min. (a) What is the difference
in mass between a charged and an uncharged battery?
(b) What fraction of the total mass is this mass difference?

The net nuclear fusion reaction inside the Sun can be

62.

written as 4 'H — 4 He + AE. The rest energy of each hydro-
gen atom is 938.78 MeV and the rest energy of the helium-4
atom is 3 728.4 MeV. Calculate the percentage of the starting
mass that is transformed to other forms of energy.

An object disintegrates into two fragments. One of
the fragments has mass 1.00 MeV/¢? and momentum
1.75 MeV/ ¢ in the positive x direction. The other fragment
has mass 1.50 MeV/¢% and momentum 2.00 MeV/¢ in the
positive y direction. Find (a) the mass and (b) the speed of
the original object.
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63.

64.
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An alien spaceship traveling at 0.600¢ toward the Earth
launches a landing craft with an advance guard of purchas-
ing agents and physics teachers. The lander travels in the
same direction with a speed of 0.800¢ relative to the
mother ship. As observed on the Earth, the spaceship is
0.200 ly from the Earth when the lander is launched.
(a) What speed do the Earth observers measure for the
approaching lander? (b) What is the distance to the Earth
at the time of lander launch, as observed by the aliens?
(c) How long does it take the lander to reach the Earth as
observed by the aliens on the mother ship? (d) If the
lander has a mass of 4.00 X 10° kg, what is its kinetic
energy as observed in the Earth reference frame?

A physics professor on the Earth gives an exam to her
students, who are in a spacecraft traveling at speed v
relative to the Earth. The moment the craft passes the
professor, she signals the start of the exam. She wishes her
students to have a time interval 7j (spacecraft time) to
complete the exam. Show that she should wait a time inter-

val (Earth time) of
T ’ 1—-v/c
1+ v/c

before sending a light signal telling them to stop. (Sugges-
tion: Remember that it takes some time for the second
light signal to travel from the professor to the students.)

T =

Spacecraft I, containing students taking a physics exam,

66.

approaches the Earth with a speed of 0.600¢ (relative to
the Earth), while spacecraft II, containing professors
proctoring the exam, moves at 0.280c¢ (relative to the
Earth) directly toward the students. If the professors stop
the exam after 50.0 min have passed on their clock, how
long does the exam last as measured by (a) the students
(b) an observer on the Earth?

Energy reaches the upper atmosphere of the Earth from
the Sun at the rate of 1.79 X 1017 W. If all of this energy
were absorbed by the Earth and not re-emitted, how much
would the mass of the Earth increase in 1.00 yr?

A supertrain (proper length 100 m) travels at a speed of

68.

0.950¢ as it passes through a tunnel (proper length
50.0 m). As seen by a trackside observer, is the train ever
completely within the tunnel? If so, with how much space
to spare?

Imagine that the entire Sun collapses to a sphere of radius
Ry such that the work required to remove a small mass m
from the surface would be equal to its rest energy mc?. This
radius is called the gravitational radius for the Sun. Find R,.
(It is believed that the ultimate fate of very massive stars is to
collapse beyond their gravitational radii into black holes.)

A particle with electric charge ¢ moves along a straight line

in a uniform electric field E with a speed of u. The electric
force exerted on the charge is ¢E. The motion and the
electric field are both in the x direction. (a) Show that the
acceleration of the particle in the x direction is given by

du _LE<1 _ u2>3/2

a=—= 5
dt m 2

(b) Discuss the significance of the dependence of the
acceleration on the speed. (c) What If? If the particle

70.

71.

starts from rest at x = 0 at ¢ = 0, how would you proceed
to find the speed of the particle and its position at time ¢?

An observer in a coasting spacecraft moves toward a
mirror at speed v relative to the reference frame labeled
by S in Figure P39.70. The mirror is stationary with respect
to S. A light pulse emitted by the spacecraft travels toward
the mirror and is reflected back to the craft. The front of
the craft is a distance d from the mirror (as measured by
observers in S) at the moment the light pulse leaves the
craft. What is the total travel time of the pulse as measured
by observers in (a) the S frame and (b) the front of the
spacecraft?

S Mirror
v=10.800¢
- A =
—
| >
0

Figure P39.70

The creation and study of new elementary particles is an
important part of contemporary physics. Especially inter-
esting is the discovery of a very massive particle. To create
a particle of mass M requires an energy Mc2. With enough
energy, an exotic particle can be created by allowing a fast
moving particle of ordinary matter, such as a proton, to
collide with a similar target particle. Let us consider a
perfectly inelastic collision between two protons: an
incident proton with mass my, kinetic energy K, and
momentum magnitude p joins with an originally stationary
target proton to form a single product particle of mass M.
You might think that the creation of a new product
particle, nine times more massive than in a previous
experiment, would require just nine times more energy for
the incident proton. Unfortunately not all of the kinetic
energy of the incoming proton is available to create the
product particle,
requires that after the collision the system as a whole still
must have some kinetic energy. Only a fraction of the
energy of the incident particle is thus available to create a
new particle. You will determine how the energy available
for particle creation depends on the energy of the moving
proton. Show that the energy available to create a product
particle is given by

since conservation of momentum

K

Mc? = 2myc? —s
4 Qm,,CQ

1+
From this result, when the kinetic energy K of the incident
proton is large compared to its rest energy mpc2, we see
that M approaches (QmpK)l/Q/c. Thus if the energy of the
incoming proton is increased by a factor of nine, the mass
you can create increases only by a factor of three. This
disappointing result is the main reason that most modern
accelerators, such as those at CERN (in Europe), at Fermi-
lab (near Chicago), at SLAC (at Stanford), and at DESY
(in Germany), use colliding beams. Here the total momen-
tum of a pair of interacting particles can be zero. The
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72.

73.

74.

76.

center of mass can be at rest after the collision, so in
principle all of the initial kinetic energy can be used for
particle creation, according to
K
to 5
2me

where K is the total kinetic energy of two identical collid-
ing particles. Here if K >> mc?, we have M directly propor-
tional to K, as we would desire. These machines are
difficult to build and to operate, but they open new vistas
in physics.

Mc? = 2mc? + K = 2me? (1

A particle of mass m moving along the x axis with a velocity
component + u collides head-on and sticks to a particle of
mass m/3 moving along the x axis with the velocity compo-
nent — . What is the mass M of the resulting particle?

A rod of length Lj moving with a speed v along the hori-
zontal direction makes an angle 6, with respect to the x’
axis. (a) Show that the length of the rod as measured by
a stationary observer is L = Ly[1 — (v%/¢?) cos? 0y]1/2.
(b) Show that the angle that the rod makes with the x axis
is given by tan 6 = vy tan 0. These results show that the
rod is both contracted and rotated. (Take the lower end of
the rod to be at the origin of the primed coordinate
system.)

Suppose our Sun is about to explode. In an effort to
escape, we depart in a spacecraft at v = 0.800¢ and head
toward the star Tau Ceti, 12.0 ly away. When we reach the
midpoint of our journey from the Earth, we see our Sun
explode and, unfortunately, at the same instant we see Tau
Ceti explode as well. (a) In the spacecraft’s frame of
reference, should we conclude that the two explosions
occurred simultaneously? If not, which occurred first?
(b) What If? In a frame of reference in which the Sun and
Tau Ceti are at rest, did they explode simultaneously? If
not, which exploded first?

. A °"Fe nucleus at rest emits a 14.0-keV photon. Use con-

servation of energy and momentum to deduce the
kinetic energy of the recoiling nucleus in electron volts.
(Use Mc? = 8.60 X 1079 ] for the final state of the *’Fe
nucleus.)

] Prepare a graph of the relativistic kinetic energy and
the classical kinetic energy, both as a function of speed, for
an object with a mass of your choice. At what speed does
the classical kinetic energy underestimate the experimen-
tal value by 1%? by 5%? by 50%?

Answers to Quick Quizzes

39.1

(c). While the observers’ measurements differ, both are
correct.

39.2 (d). The Galilean velocity transformation gives us
Uy = uy + v= 110 mi/h + 90 mi/h = 200 mi/h.
39.3 (d). The two events (the pulse leaving the flashlight and

39.4

the pulse hitting the far wall) take place at different loca-
tions for both observers, so neither measures the proper
time interval.

(a). The two events are the beginning and the end of the
movie, both of which take place at rest with respect to
the spacecraft crew. Thus, the crew measures the proper

39.5

39.6

39.7

39.8

39.9

Answers to Quick Quizzes 1283

time interval of 2 h. Any observer in motion with respect
to the spacecraft, which includes the observer on Earth,
will measure a longer time interval due to time dilation.

(a). If their on-duty time is based on clocks that remain
on the Earth, they will have larger paychecks. A shorter
time interval will have passed for the astronauts in their
frame of reference than for their employer back on the
Earth.

(c). Both your body and your sleeping cabin are at rest
in your reference frame; thus, they will have their proper
length according to you. There will be no change in
measured lengths of objects, including yourself, within
your spacecraft.

(d). Time dilation and length contraction depend only
on the relative speed of one observer relative to another,
not on whether the observers are receding or approach-
ing each other.

(c). Because of your motion toward the source of the
light, the light beam has a horizontal component of
velocity as measured by you. The magnitude of the
vector sum of the horizontal and vertical component
vectors must be equal to ¢, so the magnitude of the
vertical component must be smaller than c.

(a). In this case, there is only a horizontal component of
the velocity of the light, and you must measure a speed
of c.

39.10 (a) mg > mg = my; the rest energy of particle 3 is 2F,
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while it is £ for particles 1 and 2. (b) K3 = K9 > Kj; the
kinetic energy is the difference between the total energy
and the rest energy. The kinetic energy is 4F — 2F = 2F
for particle 3, 3E — I = 2E for particle 2,and 2E — E= E
for particle 1. (c) u9 > ug = u;; from Equation 39.26,
E = vyEg. Solving this for the square of the particle speed
u, we find u? = 2(1 — (Eg/E)?). Thus, the particle with
the smallest ratio of rest energy to total energy will have
the largest speed. Particles 1 and 3 have the same ratio as
each other, and the ratio of particle 2 is smaller.
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